This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104765 #30 Jun 21 2025 20:01:22 %S A104765 1,1,3,1,3,4,1,3,4,7,1,3,4,7,11,1,3,4,7,11,18,1,3,4,7,11,18,29,1,3,4, %T A104765 7,11,18,29,47,1,3,4,7,11,18,29,47,76,1,3,4,7,11,18,29,47,76,123,1,3, %U A104765 4,7,11,18,29,47,76,123,199,1,3,4,7,11,18,29,47,76,123,199,322,1,3,4,7,11 %N A104765 Triangle T(n,k) read by rows: row n contains the first n Lucas numbers A000204. %C A104765 Reading rows from the right to the left yields A104764. %C A104765 Sequence B is called a reluctant sequence of sequence A, if B is triangle array read by rows: row number k coincides with first k elements of the sequence A. Sequence A104765 is the reluctant sequence of A000204. - _Boris Putievskiy_, Dec 14 2012 %H A104765 G. C. Greubel, <a href="/A104765/b104765.txt">Table of n, a(n) for the first 50 rows, flattened</a> %H A104765 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012. %F A104765 T(n,k) = A000204(k), 1<=k<=n. %F A104765 T(n,k) = A104764(n,n-k+1). %F A104765 a(n) = A000204(m), where m = n-t(t+1)/2, t = floor((-1+sqrt(8*n-7))/2). - _Boris Putievskiy_, Dec 14 2012 %F A104765 G.f.: (x*y*(2*x*y+1))/((x-1)*(x^2*y^2+x*y-1)). - _Vladimir Kruchinin_, Jun 21 2025 %e A104765 First few rows of the triangle are: %e A104765 1; %e A104765 1, 3; %e A104765 1, 3, 4; %e A104765 1, 3, 4, 7; %e A104765 1, 3, 4, 7, 11; %e A104765 1, 3, 4, 7, 11, 18; %e A104765 ... %t A104765 Table[LucasL[k], {n, 1, 10}, {k, 1, n}] // Flatten (* _G. C. Greubel_, Dec 21 2017 *) %t A104765 Module[{nn=20,luc},luc=LucasL[Range[nn]];Table[Take[luc,n],{n,nn}]]//Flatten (* _Harvey P. Dale_, Jul 10 2024 *) %o A104765 (PARI) for(n=1,10, for(k=1,n, print1(fibonacci(k+1) + fibonacci(k-1), ", "))) \\ _G. C. Greubel_, Dec 21 2017 %Y A104765 Cf. A000204, A104765, A104762, A104763. %Y A104765 Cf. A027961 (row sums). %K A104765 nonn,tabl,easy %O A104765 1,3 %A A104765 _Gary W. Adamson_, Mar 24 2005 %E A104765 Edited and extended by _R. J. Mathar_, Jul 23 2008