This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104796 #15 Sep 25 2020 10:38:00 %S A104796 1,4,1,9,4,1,20,9,4,1,40,20,9,4,1,78,40,20,9,4,1,147,78,40,20,9,4,1, %T A104796 272,147,78,40,20,9,4,1,495,272,147,78,40,20,9,4,1,890,495,272,147,78, %U A104796 40,20,9,4,1,1584,890,495,272,147,78,40,20,9,4,1,2796,1584,890,495,272 %N A104796 Triangle read by rows: T(n,k) = (n+1-k)*Fibonacci(n+2-k), for n>=1, 1<=k<=n. %C A104796 The first column is A023607 (without the leading zero). %H A104796 Harvey P. Dale, <a href="/A104796/b104796.txt">Table of n, a(n) for n = 1..1000</a> %e A104796 Rows 1,2,3,4,5,6 and columns 1,2,3,4,5,6 of the triangle are: %e A104796 1; %e A104796 4, 1; %e A104796 9, 4, 1; %e A104796 20, 9, 4, 1; %e A104796 40, 20, 9, 4, 1; %e A104796 78, 40, 20, 9, 4, 1; %e A104796 ... %e A104796 Row 3 for example is 3*F(4), 2*F(3), 1*F(2) = 3*3, 2*2, 1*1 = 9, 4, 1. %e A104796 Row 4 is 4*F(5), 3*F(4), 2*F(3), 1*F(2) = 4*5, 3*3, 2*2, 1*1 = 20, 9, 4, 1. %e A104796 Reading the rows backwards gives an initial segment of the terms of A023607 (but without the initial zero). %t A104796 Table[(n+1-k)Fibonacci[n+2-k],{n,20},{k,n}]//Flatten (* _Harvey P. Dale_, Sep 24 2020 *) %t A104796 Module[{nn=20,c},c=LinearRecurrence[{2,1,-2,-1},{1,4,9,20},nn];Table[ Reverse[ Take[c,n]],{n,nn}]]//Flatten (* _Harvey P. Dale_, Sep 25 2020 *) %Y A104796 Row sums are in A094584. %Y A104796 Cf. A023607, A104762, A104765, A000045. %K A104796 nonn,tabl %O A104796 1,2 %A A104796 _Gary W. Adamson_, Mar 26 2005 %E A104796 Edited by _Ralf Stephan_, Apr 05 2009 %E A104796 Entry revised by _N. J. A. Sloane_, Sep 23 2020