cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104854 Number of n-digit numbers using digits 0 to n-1 each exactly once and containing no 3-digit sequence in increasing or decreasing order.

Original entry on oeis.org

1, 1, 3, 8, 27, 106, 483, 2498, 14487, 93106, 657063, 5051738, 42033747, 376353706, 3608153643, 36879266978, 400339173807, 4599894007906, 55772890550223, 711653491362218, 9532624918010667, 133746250733151706, 1961498898620566803
Offset: 1

Views

Author

Michel Criton (mcriton(AT)wanadoo.fr), Apr 23 2005 and May 29 2005

Keywords

Comments

Leading zeros are not allowed, but digits > 9 are permitted.
Derived from A001250: 1, 2, 4, 10, 32, 122, 544, 2770, 15872, 101042, 707584, 5405530, ... giving 1, 1 and 4-2/2, 10-4/2, 32-10/2, 122-32/2=106, 544-122/2=483, ...

Examples

			The n-digit numbers contributing to the counts are:
n=1: 0;
n=2: 10;
n=3: 102, 120, 201;
n=4: 1032, 1203, 1302, 2031, 2130, 2301, 3021, 3120;
n=5: 10324, 10423, 12043,...,41302, 42301;
G.f.: 1 + x + 3*x^2 + 8*x^3 + 27*x^4 + 106*x^5 + 483*x^6 + 2498*x^7 + ...
		

Crossrefs

Programs

  • Maple
    A001250 := proc(n) local x; if n = 1 then 1; else n!*coeftayl( 2*(tan(x)+sec(x)),x=0,n) ; fi ; end: A104854 := proc(n) if n <= 2 then 1; else A001250(n)-A001250(n-1)/2 ; fi ; end: seq(A104854(n),n=1..30) ; # R. J. Mathar, Feb 14 2008
  • Mathematica
    m = 23;
    CoefficientList[1 + (Sec[x] + Tan[x] - 1)(Sec[x] + Tan[x]) + O[x]^m, x]* Range[0, m - 1]! (* Jean-François Alcover, Mar 31 2020 *)
  • Python
    from itertools import accumulate, islice
    def A104854_gen(): # generator of terms
        yield 1
        blist = (0,1)
        while True:
            yield -blist[-1]+2*(blist := tuple(accumulate(reversed(blist),initial=0)))[-1]
    A104854_list = list(islice(A104854_gen(),40)) # Chai Wah Wu, Jun 14 2022

Formula

For n>2, a(n) = A001250(n) - A001250(n-1)/2 = A001250(n) - A000111(n).
a(n) = 2*A000111(n+1)-A000111(n) [Berry et al., 2013] (but compare A231895). - N. J. A. Sloane, Nov 18 2013
E.g.f: 1+(sec(x)+tan(x)-1)*(sec(x)+tan(x)). - Sergei N. Gladkovskii, Nov 07 2014

Extensions

More terms from R. J. Mathar, Feb 14 2008