A104855 Triangle read by rows: T(n,k) (0 <= k <= n) is the number of three-dimensional lattice walks consisting of n unit steps, each in one of the six coordinate directions, starting at the origin, never going below the horizontal plane and having k vertical steps.
1, 4, 1, 16, 8, 2, 64, 48, 24, 3, 256, 256, 192, 48, 6, 1024, 1280, 1280, 480, 120, 10, 4096, 6144, 7680, 3840, 1440, 240, 20, 16384, 28672, 43008, 26880, 13440, 3360, 560, 35, 65536, 131072, 229376, 172032, 107520, 35840, 8960, 1120, 70, 262144, 589824
Offset: 0
Examples
T(2,1)=8 because we have NU, SU, EU, WU, UN, US, UE and UW, where N=(0,1,0),S=(0,-1,0), E=(1,0,0),W=(-1,0,0), U=(0,0,1) and S=(0,0,-1). Triangle begins: 1; 4, 1; 16, 8, 2; 64, 48, 24, 3;
Links
- J. Brawner, Three-Dimensional Lattice Walks in the Upper Half-Space: Problem 10795, Amer. Math. Monthly, 108 (Dec. 2001), 980.
Crossrefs
Programs
-
Maple
T:=(n,k)->binomial(n,k)*binomial(k,ceil(k/2))*4^(n-k): for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
Formula
T(n, k) = binomial(n, k)*binomial(k, ceiling(k/2))*4^(n-k).