cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104856 Triangle read by rows: T(n,k) = binomial(n,k)*binomial(k,floor(k/2))*binomial(n-k,floor((n-k)/2)) (0<=k<=n).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 6, 6, 3, 6, 12, 24, 12, 6, 10, 30, 60, 60, 30, 10, 20, 60, 180, 180, 180, 60, 20, 35, 140, 420, 630, 630, 420, 140, 35, 70, 280, 1120, 1680, 2520, 1680, 1120, 280, 70, 126, 630, 2520, 5040, 7560, 7560, 5040, 2520, 630, 126, 252, 1260, 6300
Offset: 0

Views

Author

Emeric Deutsch, Apr 23 2005

Keywords

Comments

T(n,k) is the number of paths in the first quadrant, starting from the origin, with unit steps up, down, right, or left, having a total of n steps, exactly k of which are vertical (up or down). Example: T(3,2)=6 because we have NNE, NEN, ENN, NSE, ENS and NES. [Emeric Deutsch, Nov 22 2008]

Crossrefs

Row sums yield A005566. T(n, 0)=T(n, n)=A001405(n).

Programs

  • Maple
    T:=(n,k)->binomial(n,k)*binomial(k,floor(k/2))*binomial(n-k,floor((n-k)/2)): for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form

Formula

T(n, k) = binomial(n, k)*binomial(k, floor(k/2))*binomial(n-k, floor((n-k)/2)) (0<=k<=n).