This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104862 #29 Mar 21 2021 13:07:13 %S A104862 0,1,1,1,1,0,-2,-5,-9,-13,-15,-12,0,25,65,117,169,196,158,3,-321,-841, %T A104862 -1519,-2200,-2560,-2079,-79,4121,10881,19720,28638,33435,27351,1547, %U A104862 -52895,-140772,-256000,-372775,-436655,-359763,-26871 %N A104862 First differences of A014292. %C A104862 Real part of the sequence of complex numbers defined by c(n) = c(n-1) + i*c(n-2) for n > 1, c(0) = 1, c(1) = 1. %C A104862 a(n) = real part of the sequence b of quaternions defined by b(0)=1, b(1)=1, b(n) = b(n-1) + b(n-2)*(0,s,s,s) where s = 1/sqrt(3). %H A104862 Michael De Vlieger, <a href="/A104862/b104862.txt">Table of n, a(n) for n = 0..6285</a> %F A104862 G.f.: Re(1/(1-x-ix^2)) = (1-x)/(1-2x+x^2+x^4). - _Paul Barry_, Apr 25 2005 %F A104862 a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*cos(Pi*k/2). - _Paul Barry_, Apr 25 2005 %F A104862 a(0)=0, a(1)=1, a(n+1) = a(n) - Sum_{k=0..n-3} a(k). - _Alex Ratushnyak_, May 03 2012 %t A104862 Differences@ LinearRecurrence[{2, -1, 0, -1}, {0, 0, 1, 2}, 42] (* _Michael De Vlieger_, Mar 19 2021 *) %o A104862 (Python) %o A104862 a = [0]*1000 %o A104862 a[1]=1 %o A104862 for n in range(1,55): %o A104862 print(a[n-1], end=", ") %o A104862 s=sum(a[k] for k in range(n-2)) %o A104862 a[n+1] = a[n]-s %o A104862 # from _Alex Ratushnyak_, May 03 2012 %Y A104862 Cf. A078001, A014292. %K A104862 sign %O A104862 0,7 %A A104862 _Gerald McGarvey_, Apr 24 2005