This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104877 #13 Feb 16 2025 08:32:57 %S A104877 30031,9699691,223092871,13082761331670031,117288381359406970983271, %T A104877 7858321551080267055879091,40729680599249024150621323471, %U A104877 267064515689275851355624017992791 %N A104877 Semiprimes of the form primorial(k) + 1. %H A104877 Sebastian Martin Ruiz, <a href="https://www.jstor.org/stable/3619207">A Result on Prime Numbers</a>, Math. Gaz. 81, 269, 1997. %H A104877 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Primorial.html">Primorial.</a> %H A104877 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Semiprime.html">Semiprime.</a> %F A104877 n# + 1 iff semiprime. Equals {A002110(i) + 1} intersection {A001358(j)}. %e A104877 6# + 1 = 2*3*5*7*11*13 + 1 = 30031 = 59 x 509. %e A104877 8# + 1 = 2*3*5*7*11*13*17*19 + 1 = 9699691 = 347 x 27953. %e A104877 9# + 1 = 2*3*5*7*11*13*17*19*23 + 1 = 223092871 = 317 x 703763. %e A104877 14# + 1 = 2*3*5*7*11*13*17*19*23*29*31*37*41*43 + 1 = 13082761331670031 = 167 x 78339888213593. %t A104877 Bigomega[n_]:=Plus@@Last/@FactorInteger[n]; SemiprimeQ[n_]:=Bigomega[n]==2; Primorial[n_]:=Product[Prime[i], {i, n}]; Select[Table[Primorial[n]+1, {n, 30}], SemiprimeQ] (* _Ray Chandler_, Mar 28 2005 *) %t A104877 Select[FoldList[Times,Prime[Range[30]]]+1,PrimeOmega[#]==2&] (* _Harvey P. Dale_, Oct 13 2022 *) %Y A104877 Cf. A001358, A002110, A034386, A005234, A014545, A018239, A006794, A057704, A057705, A104876. %K A104877 easy,nonn %O A104877 1,1 %A A104877 _Jonathan Vos Post_, Mar 28 2005