A104894 Binary array, related to the Thue-Morse sequence A010060, read by downward antidiagonals.
0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1
Offset: 0
Examples
Row n consists of repetitions of the first 2^(n+1) terms of A010060: . n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... --------------------------------------------------------- 0 | 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ... 1 | 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, ... 2 | 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, ... 3 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, ... 4 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, ... 5 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, ... 6 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, ... 7 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, ... ... Columns written in base 10 (see Table 2 of reference) give 0, -1, -2, 1, -4, 3, 2, -3, -8, 7, 6, -7, 4, -5, -6, 5, ... (see A104895).
Links
- Paolo Xausa, Table of n, a(n) for n = 0..11324 (first 150 antidiagonals, flattened).
- David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].
Programs
-
Mathematica
Table[ThueMorse[Mod[n-k, 2^(k+1)]], {n, 0, 15}, {k, 0, n}] (* Paolo Xausa, Apr 04 2024 *)
Formula
T(n,k) = A010060(k mod 2^(n+1)). - Paolo Xausa, Apr 04 2024
Extensions
a(48) = 0 removed by Paolo Xausa, Apr 04 2024