This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104956 #68 Aug 04 2025 08:56:28 %S A104956 2,5,9,8,0,7,6,2,1,1,3,5,3,3,1,5,9,4,0,2,9,1,1,6,9,5,1,2,2,5,8,8,0,8, %T A104956 5,5,0,4,1,4,2,0,7,8,8,0,7,1,5,5,7,0,9,4,2,0,8,3,7,1,0,4,6,9,1,7,7,8, %U A104956 9,9,5,2,5,3,6,3,2,0,0,0,5,5,6,2,1,7,1,9,2,8,0,1,3,5,8,7,2,8,6,3,5,1,3,4,3 %N A104956 Decimal expansion of the area of the regular hexagon with circumradius 1. %C A104956 Equivalently, the area in the complex plane of the smallest convex set containing all order-6 roots of unity. %C A104956 Subtracting 2.5 (i.e., dropping the first two digits) we obtain 0.09807.... which is a limiting mean cluster density for a bond percolation model at probability 1/2 [Finch]. - _R. J. Mathar_, Jul 26 2007 %C A104956 This constant is also the minimum radius of curvature of the exponential curve (occurring at x = -log(2)/2 = -0.34657359...). - _Jean-François Alcover_, Dec 19 2016 %C A104956 Luminet proves that this is the critical impact parameter of a bare black hole, in multiples of the Schwarzschild radius. That is, light from a distant source coming toward a black hole is captured by the black hole at smaller distances and deflected at larger distances. - _Charles R Greathouse IV_, May 21 2022 %C A104956 For any triangle ABC, sin(A) + sin(B) + sin(C) <= 3*sqrt(3)/2, equality is obtained only when the triangle is equilateral (see the Kiran S. Kedlaya link). - _Bernard Schott_, Sep 16 2022 %C A104956 Surface area of a triangular bipyramid (Johnson solid J_12) with unit edges. - _Paolo Xausa_, Aug 04 2025 %D A104956 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.24, p. 412. %H A104956 G. C. Greubel, <a href="/A104956/b104956.txt">Table of n, a(n) for n = 1..10000</a> %H A104956 S. R. Finch, <a href="http://dx.doi.org/10.1007/BF01608791">Several Constants Arising in Statistical Mechanics</a>, Annals Combinat. vol 3 (1999) issue (2-4) pp. 323-335. %H A104956 Kiran S. Kedlaya, <a href="https://igor-kortchemski.perso.math.cnrs.fr/olympiades/Cours/ineqs-080299.pdf">A < B</a>, (1999), Problem 6.1, p. 6. %H A104956 J.-P. Luminet, <a href="https://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1979A&A....75..228L">Image of a spherical black hole with thin accretion disk</a>, Astronomy and Astrophysics, vol. 75, no. 1-2 (May 1979), pp. 228-235. %H A104956 Michael Penn, <a href="https://www.youtube.com/watch?v=UNMYya7yYGg">not as bad as it seems...</a>, YouTube video, 2021. %H A104956 Eric Weisstein et al., <a href="https://mathworld.wolfram.com/RootofUnity.html">Root of Unity</a>. %H A104956 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/deMoivreNumber.html">de Moivre Number</a>. %H A104956 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Twenty-VertexEntropyConstant.html">Twenty-Vertex Entropy Constant</a>. %H A104956 Wikipedia, <a href="http://en.wikipedia.org/wiki/Hexagon">Hexagon</a>. %H A104956 Wikipedia, <a href="http://en.wikipedia.org/wiki/Regular_polygon">Regular polygon</a>. %H A104956 Wikipedia, <a href="https://en.wikipedia.org/wiki/Triangular_bipyramid">Triangular bipyramid</a>. %H A104956 <a href="/index/Al#algebraic_02">Index entries for algebraic numbers, degree 2</a>. %F A104956 Equals (3*sqrt(3))/2, that is, 2*A104954. %F A104956 Equals Product_{k>=3} (((k - 1)^2*(k + 2))/((k + 1)^2*(k - 2)))^(k/2). - _Antonio Graciá Llorente_, Oct 13 2024 %e A104956 2.59807621135331594029116951225880855041420788071557094208371046917789952536320... %t A104956 Floor[n/2]*Sin[(2*Pi)/n] - Sin[(4*Pi*Floor[n/2])/n]/2 /. n -> 6 %t A104956 RealDigits[(3*Sqrt[3])/2, 10, 50][[1]] (* _G. C. Greubel_, Jul 03 2017 *) %o A104956 (PARI) 3*sqrt(3)/2 \\ _G. C. Greubel_, Jul 03 2017 %Y A104956 Cf. A002194, A104954, A104955, A104957. %Y A104956 Cf. Areas of other regular polygons: A120011, A102771, A178817, A090488, A256853, A178816, A256854, A178809. %K A104956 nonn,cons,easy %O A104956 1,1 %A A104956 Joseph Biberstine (jrbibers(AT)indiana.edu), Mar 30 2005