cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104956 Decimal expansion of the area of the regular hexagon with circumradius 1.

This page as a plain text file.
%I A104956 #68 Aug 04 2025 08:56:28
%S A104956 2,5,9,8,0,7,6,2,1,1,3,5,3,3,1,5,9,4,0,2,9,1,1,6,9,5,1,2,2,5,8,8,0,8,
%T A104956 5,5,0,4,1,4,2,0,7,8,8,0,7,1,5,5,7,0,9,4,2,0,8,3,7,1,0,4,6,9,1,7,7,8,
%U A104956 9,9,5,2,5,3,6,3,2,0,0,0,5,5,6,2,1,7,1,9,2,8,0,1,3,5,8,7,2,8,6,3,5,1,3,4,3
%N A104956 Decimal expansion of the area of the regular hexagon with circumradius 1.
%C A104956 Equivalently, the area in the complex plane of the smallest convex set containing all order-6 roots of unity.
%C A104956 Subtracting 2.5 (i.e., dropping the first two digits) we obtain 0.09807.... which is a limiting mean cluster density for a bond percolation model at probability 1/2 [Finch]. - _R. J. Mathar_, Jul 26 2007
%C A104956 This constant is also the minimum radius of curvature of the exponential curve (occurring at x = -log(2)/2 = -0.34657359...). - _Jean-François Alcover_, Dec 19 2016
%C A104956 Luminet proves that this is the critical impact parameter of a bare black hole, in multiples of the Schwarzschild radius. That is, light from a distant source coming toward a black hole is captured by the black hole at smaller distances and deflected at larger distances. - _Charles R Greathouse IV_, May 21 2022
%C A104956 For any triangle ABC, sin(A) + sin(B) + sin(C) <= 3*sqrt(3)/2, equality is obtained only when the triangle is equilateral (see the Kiran S. Kedlaya link). - _Bernard Schott_, Sep 16 2022
%C A104956 Surface area of a triangular bipyramid (Johnson solid J_12) with unit edges. - _Paolo Xausa_, Aug 04 2025
%D A104956 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.24, p. 412.
%H A104956 G. C. Greubel, <a href="/A104956/b104956.txt">Table of n, a(n) for n = 1..10000</a>
%H A104956 S. R. Finch, <a href="http://dx.doi.org/10.1007/BF01608791">Several Constants Arising in Statistical Mechanics</a>, Annals Combinat. vol 3 (1999) issue (2-4) pp. 323-335.
%H A104956 Kiran S. Kedlaya, <a href="https://igor-kortchemski.perso.math.cnrs.fr/olympiades/Cours/ineqs-080299.pdf">A < B</a>, (1999), Problem 6.1, p. 6.
%H A104956 J.-P. Luminet, <a href="https://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1979A&amp;A....75..228L">Image of a spherical black hole with thin accretion disk</a>, Astronomy and Astrophysics, vol. 75, no. 1-2 (May 1979), pp. 228-235.
%H A104956 Michael Penn, <a href="https://www.youtube.com/watch?v=UNMYya7yYGg">not as bad as it seems...</a>, YouTube video, 2021.
%H A104956 Eric Weisstein et al., <a href="https://mathworld.wolfram.com/RootofUnity.html">Root of Unity</a>.
%H A104956 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/deMoivreNumber.html">de Moivre Number</a>.
%H A104956 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Twenty-VertexEntropyConstant.html">Twenty-Vertex Entropy Constant</a>.
%H A104956 Wikipedia, <a href="http://en.wikipedia.org/wiki/Hexagon">Hexagon</a>.
%H A104956 Wikipedia, <a href="http://en.wikipedia.org/wiki/Regular_polygon">Regular polygon</a>.
%H A104956 Wikipedia, <a href="https://en.wikipedia.org/wiki/Triangular_bipyramid">Triangular bipyramid</a>.
%H A104956 <a href="/index/Al#algebraic_02">Index entries for algebraic numbers, degree 2</a>.
%F A104956 Equals (3*sqrt(3))/2, that is, 2*A104954.
%F A104956 Equals Product_{k>=3} (((k - 1)^2*(k + 2))/((k + 1)^2*(k - 2)))^(k/2). - _Antonio Graciá Llorente_, Oct 13 2024
%e A104956 2.59807621135331594029116951225880855041420788071557094208371046917789952536320...
%t A104956 Floor[n/2]*Sin[(2*Pi)/n] - Sin[(4*Pi*Floor[n/2])/n]/2 /. n -> 6
%t A104956 RealDigits[(3*Sqrt[3])/2, 10, 50][[1]] (* _G. C. Greubel_, Jul 03 2017 *)
%o A104956 (PARI) 3*sqrt(3)/2 \\ _G. C. Greubel_, Jul 03 2017
%Y A104956 Cf. A002194, A104954, A104955, A104957.
%Y A104956 Cf. Areas of other regular polygons: A120011, A102771, A178817, A090488, A256853, A178816, A256854, A178809.
%K A104956 nonn,cons,easy
%O A104956 1,1
%A A104956 Joseph Biberstine (jrbibers(AT)indiana.edu), Mar 30 2005