This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104982 #8 Jun 08 2021 14:57:53 %S A104982 1,4,21,133,977,8135,75609,775667,8707057,106185715,1398451353, %T A104982 19786121467,299384925569,4825081148819,82531968286569, %U A104982 1493412479919371,28504390805515921,572363196501249667,12061937537478658809 %N A104982 Column 3 of triangle A104980, omitting leading zeros. %C A104982 Equals one-half of column 0 (after initial term) in triangle A104988, which equals the matrix square of triangle A104980. %H A104982 G. C. Greubel, <a href="/A104982/b104982.txt">Table of n, a(n) for n = 0..440</a> %F A104982 a(n) = A104988(n+1, 0)/2 for n>=0. %t A104982 T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==n-1, n, k*T[n, k+1] + Sum[T[j, 0]*T[n, j+k+1], {j,0,n-k-1}]]]]; %t A104982 Table[T[n+3, 3], {n, 0, 30}] (* _G. C. Greubel_, Jun 07 2021 *) %o A104982 (PARI) {a(n) = if(n<0, 0, (matrix(n+4, n+4, m, j, if(m==j, 1, if(m==j+1, -m+1, -polcoeff((1-1/sum(i=0, m, i!*x^i))/x +O(x^m), m-j-1))))^-1)[n+4,4])} %o A104982 (Sage) %o A104982 @CachedFunction %o A104982 def T(n,k): %o A104982 if (k<0 or k>n): return 0 %o A104982 elif (k==n): return 1 %o A104982 elif (k==n-1): return n %o A104982 else: return k*T(n, k+1) + sum( T(j, 0)*T(n, j+k+1) for j in (0..n-k-1) ) %o A104982 [T(n+3,3) for n in (0..30)] # _G. C. Greubel_, Jun 07 2021 %Y A104982 Cf. A104980, A104981, A104988. %K A104982 nonn %O A104982 0,2 %A A104982 _Paul D. Hanna_, Apr 10 2005