This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104984 #10 Jun 08 2021 14:58:01 %S A104984 1,-1,1,-1,-2,1,-3,-1,-3,1,-13,-3,-1,-4,1,-71,-13,-3,-1,-5,1,-461,-71, %T A104984 -13,-3,-1,-6,1,-3447,-461,-71,-13,-3,-1,-7,1,-29093,-3447,-461,-71, %U A104984 -13,-3,-1,-8,1,-273343,-29093,-3447,-461,-71,-13,-3,-1,-9,1,-2829325,-273343,-29093,-3447,-461,-71,-13,-3,-1,-10,1 %N A104984 Matrix inverse of triangle A104980. %C A104984 Inverse matrix A104980 satisfies: SHIFT_LEFT(column 0 of A104980^p) = p*(column p+1 of A104980) for p>=0. %H A104984 G. C. Greubel, <a href="/A104984/b104984.txt">Rows n = 0..50 of the triangle, flattened</a> %F A104984 T(n, n) = 1, T(n+1, n) = -(n+1) for n >= 0; otherwise T(n, k) = T(n-k, 0) = -A003319(n-k-1) for n > k+1 and k >= 0. %F A104984 Sum_{k=0..n} T(n, k) = A104985(n). - _G. C. Greubel_, Jun 07 2021 %e A104984 Triangle begins: %e A104984 1; %e A104984 -1, 1; %e A104984 -1, -2, 1; %e A104984 -3, -1, -3, 1; %e A104984 -13, -3, -1, -4, 1; %e A104984 -71, -13, -3, -1, -5, 1; %e A104984 -461, -71, -13, -3, -1, -6, 1; %e A104984 -3447, -461, -71, -13, -3, -1, -7, 1; %e A104984 -29093, -3447, -461, -71, -13, -3, -1, -8, 1; ... %t A104984 A003319[n_]:= A003319[n]= If[n==0, 0, n! - Sum[j!*A003319[n-j], {j,n-1}]]; %t A104984 T[n_, k_]:= If[k==n, 1, If[k==n-1, -n, -A003319[n-k]]]; %t A104984 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jun 07 2021 *) %o A104984 (PARI) T(n,k)=if(n==k,1,if(n==k+1,-n,-(n-k)!-sum(i=1,n-k-1,i!*T(n-k-i,0)))); %o A104984 (Sage) %o A104984 @CachedFunction %o A104984 def T(n,k): %o A104984 if (k==n): return 1 %o A104984 elif (k==n-1): return -n %o A104984 else: return -factorial(n-k) - sum( factorial(j)*T(n-k-j, 0) for j in (1..n-k-1) ) %o A104984 [[T(n,k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Jun 07 2021 %Y A104984 Cf. A104980, A104985 (row sums). %K A104984 sign,tabl %O A104984 0,5 %A A104984 _Paul D. Hanna_, Apr 10 2005