This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A104985 #7 Jun 08 2021 14:58:09 %S A104985 1,0,-2,-6,-20,-92,-554,-4002,-33096,-306440,-3135766,-35134670, %T A104985 -427878628,-5628940084,-79572364498,-1203168642362,-19379896959776, %U A104985 -331331041788640,-5993029816637262,-114348894263852326,-2295445815821635932,-48362099044178487564 %N A104985 Row sums of triangle A104984. %C A104985 A104984 equals the matrix inverse of A104980. %H A104985 G. C. Greubel, <a href="/A104985/b104985.txt">Table of n, a(n) for n = 0..445</a> %F A104985 a(n) = Sum_{k=0..n} A104984(n, k). %t A104985 A003319[n_]:= A003319[n]= If[n==0, 0, n! -Sum[j!*A003319[n-j], {j,n-1}]]; %t A104985 A104984[n_, k_]:= If[k==n, 1, If[k==n-1, -n, -A003319[n-k]]]; %t A104985 a[n_]:= Sum[A104984[n, k], {k,0,n}]; %t A104985 Table[a[n], {n, 0, 30}] (* _G. C. Greubel_, Jun 07 2021 *) %o A104985 (PARI) {a(n)=sum(k=0,n,if(k==n,1,if(k==n-1,-n, -polcoeff((1-1/sum(i=0,n-k,i!*x^i))/x+O(x^(n-k)),n-k-1) )))} %o A104985 (Sage) %o A104985 @CachedFunction %o A104985 def T(n,k): %o A104985 if (k==n): return 1 %o A104985 elif (k==n-1): return -n %o A104985 else: return -factorial(n-k) - sum( factorial(j)*T(n-k-j, 0) for j in (1..n-k-1) ) %o A104985 [sum(T(n,k) for k in (0..n)) for n in (0..30)] # _G. C. Greubel_, Jun 07 2021 %Y A104985 Cf. A104984, A104980. %K A104985 sign %O A104985 0,3 %A A104985 _Paul D. Hanna_, Apr 10 2005