This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A105023 #14 May 05 2020 05:34:53 %S A105023 0,2,4,2,0,10,4,2,0,2,4,2,16,10,4,2,0,2,4,2,0,10,4,2,0,2,4,34,16,10,4, %T A105023 2,0,2,4,2,0,10,4,2,0,2,4,2,16,10,4,2,0,2,4,2,0,10,4,2,0,2,68,34,16, %U A105023 10,4,2,0,2,4,2,0,10,4,2,0,2,4,2,16,10,4,2,0,2,4,2,0,10,4,2,0,2,4,34,16,10,4 %N A105023 a(n) = A102370(n) - n. Or, 2*A103185(n). %C A105023 When written in base 2 as a right justified table, columns have periods 1, 2, 4, 8, ... - _Philippe Deléham_, Apr 21 2005 %H A105023 David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [<a href="http://neilsloane.com/doc/slopey.pdf">pdf</a>, <a href="http://neilsloane.com/doc/slopey.ps">ps</a>]. %H A105023 David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Sloane/sloane300.html">Sloping binary numbers: a new sequence related to the binary numbers</a>, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp. %F A105023 a(n) = Sum_{ k >= 1 such that n + k == 0 mod 2^k } 2^k. %e A105023 Has a natural decomposition into blocks: 0; 2; 4, 2, 0; 10, 4, 2, 0, 2, 4, 2; 16, 10, 4, 2, 0, 2, 4, 2, 0, 10, 4, 2, 0, 2, 4; 34, 16, 10, 4, ... where the leading term in each block is given by A105024. %p A105023 s:= proc (n) local t1, l; t1 := 0; for l to n do if `mod`(n+l,2^l) = 0 then t1 := t1+2^l end if end do; t1 end proc; %Y A105023 Cf. A102370, A103185, A105024. %K A105023 nonn,base %O A105023 0,2 %A A105023 _N. J. A. Sloane_, Apr 03 2005