This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A105029 #19 May 08 2020 06:10:03 %S A105029 0,2,6,5,4,14,13,8,11,10,9,12,30,29,24,19,18,17,20,23,22,21,16,27,26, %T A105029 25,28,62,61,56,51,34,33,36,39,38,37,32,43,42,41,44,47,46,45,40,35,50, %U A105029 49,52,55,54,53,48,59,58,57,60,126,125,120,115,98,65,68,71,70 %N A105029 Write numbers in binary under each other, left justified, read diagonals in downward direction, convert to decimal. %C A105029 All terms are distinct, but the numbers 2^m - 1 are missing. %C A105029 a(n) = Sum_{k>=1} B(n+k-1,k)*2^(A103586(n)-k) where B(n,k) n>=1, k>=1 is the infinite array: %C A105029 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,... %C A105029 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,... %C A105029 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,... %C A105029 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,... %C A105029 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,... %C A105029 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,... %C A105029 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,... %C A105029 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,... %C A105029 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,... %C A105029 ....... %C A105029 where n-th row consists of binary expansion of n followed by 0's. %C A105029 a(n) = A105025(n) iff A070939(n) = A103586(n), cf. A214489. - _Reinhard Zumkeller_, Jul 21 2012 %H A105029 Reinhard Zumkeller, <a href="/A105029/b105029.txt">Table of n, a(n) for n = 0..10000</a> %H A105029 David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [<a href="http://neilsloane.com/doc/slopey.pdf">pdf</a>, <a href="http://neilsloane.com/doc/slopey.ps">ps</a>]. %H A105029 David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Sloane/sloane300.html">Sloping binary numbers: a new sequence related to the binary numbers</a>, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp. %H A105029 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %e A105029 0 %e A105029 1 %e A105029 1 0 %e A105029 1 1 %e A105029 1 0 0 %e A105029 1 0 1 %e A105029 1 1 0 %e A105029 1 1 1 %e A105029 1 0 0 0 %e A105029 1 0 0 1 %e A105029 1 0 1 0 %e A105029 and reading the diagonals downwards we get 0, 10, 110, 101, 100, 1110, 1101, etc. %o A105029 (Haskell) %o A105029 import Data.Bits ((.|.), (.&.)) %o A105029 a105029 n = foldl (.|.) 0 $ zipWith (.&.) a000079_list $ %o A105029 map (\x -> (len + 1 - a070939 x) * x) %o A105029 (reverse $ enumFromTo n (n - 1 + len)) where len = a103586 n %o A105029 -- _Reinhard Zumkeller_, Jul 21 2012 %Y A105029 Cf. A102370, A105030, A105025, A105026, A105027, A105028, A105033. %Y A105029 Cf. A000079, A070939, A103586. %K A105029 nonn,base %O A105029 0,2 %A A105029 _Benoit Cloitre_, Apr 03 2005