This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A105078 #13 Mar 11 2015 18:53:21 %S A105078 4,16,26,54,110,120,126,260,314,420,444,470,570,646,714,890,946,1010, %T A105078 1294,1306,1394,1640,1674,1794,1920,1964,2116,2174,2360,2430,2624, %U A105078 2666,2884,2924,3094,3106,3174,3220,3504,3686,3826,3884,3924,4046,4540,4700 %N A105078 Positive integers n such that n^10 + 1 is semiprime. %C A105078 We have the polynomial factorization: n^10+1 = (n^2+1) * (n^8 - n^6 + n^4 - n^2 + 1) Hence after the initial n=1 prime the binomial can only be semiprime if n^2 + 1 is prime and n^8 - n^6 + n^4 - n^2 + 1 is prime. %H A105078 Robert Price, <a href="/A105078/b105078.txt">Table of n, a(n) for n = 1..1105</a> %e A105078 4^10+1 = 1048577 = 17 * 61681, %e A105078 16^10+1 = 1099511627777 = 257 * 4278255361, %e A105078 1010^10+1 = 1104622125411204510010000000001 = 1020101 * 1082855644108970101989901. %t A105078 Select[ Range[5000], PrimeQ[ #^2 + 1] && PrimeQ[(#^10 + 1)/(#^2 + 1)] &] (* _Robert G. Wilson v_, Apr 08 2005 *) %t A105078 Select[Range[4700], PrimeOmega[#^10+1]==2&] (* _Harvey P. Dale_, Jan 13 2013 *) %Y A105078 Cf. A001358, A085722, A096173, A186669, A104238, A103854, A105041, A105066, A105078, A105122, A105142, A105237, A104335, A104479, A104494, A104657, A105282. %K A105078 easy,nonn %O A105078 1,1 %A A105078 _Jonathan Vos Post_, Apr 06 2005 %E A105078 More terms from _Robert G. Wilson v_, Apr 08 2005