cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105097 Expansion of Delta(tau)/E_4(tau)^2.

This page as a plain text file.
%I A105097 #25 Aug 11 2021 06:29:02
%S A105097 1,-504,180252,-56364992,16415391870,-4574618335008,1237162549543256,
%T A105097 -327377686829760000,85212608926827807477,-21894492009015306942480,
%U A105097 5567179862617316105012532,-1403483985988949037403977984
%N A105097 Expansion of Delta(tau)/E_4(tau)^2.
%C A105097 According to Paşol and Zudilin, a(n) is divisible by n. - _F. Chapoton_, Aug 10 2021
%H A105097 Seiichi Manyama, <a href="/A105097/b105097.txt">Table of n, a(n) for n = 1..423</a>
%H A105097 Richard E. Borcherds, <a href="https://arxiv.org/abs/alg-geom/9609022">Automorphic forms with singularities on Grassmannians</a>, arXiv:alg-geom/9609022, 1996-1997; Invent. Math. 132 (1998), 491-562.
%H A105097 Vicenţiu Paşol and Wadim Zudilin, <a href="https://arxiv.org/abs/2009.14609">Magnetic (quasi-)modular forms</a>, arXiv:2009.14609 [math.NT], 2020.
%F A105097 a(n) ~ -(-1)^n * exp(Pi*sqrt(3)*n) * n / 192. - _Vaclav Kotesovec_, Jun 07 2018
%o A105097 (PARI) {a(n)=if(n<1,0,polcoeff( x*eta(x+x*O(x^n))^24/sum(k=1,n,480*sigma(k,7)*x^k,1),n))} /* _Michael Somos_, Apr 07 2005 */
%Y A105097 Cf. A000594, A004009, A008410.
%K A105097 sign,easy
%O A105097 1,2
%A A105097 _N. J. A. Sloane_, Apr 07 2005
%E A105097 More terms from _Michael Somos_, Apr 07 2005