cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105119 Numbers obtained by rotating right the indices in the prime signature of n.

This page as a plain text file.
%I A105119 #20 Apr 19 2016 01:07:35
%S A105119 1,2,3,4,5,6,7,8,9,10,11,18,13,14,15,16,17,12,19,50,21,22,23,54,25,26,
%T A105119 27,98,29,30,31,32,33,34,35,36,37,38,39,250,41,42,43,242,75,46,47,162,
%U A105119 49,20,51,338,53,24,55,686,57,58,59,90,61,62,147,64,65,66,67,578,69,70
%N A105119 Numbers obtained by rotating right the indices in the prime signature of n.
%C A105119 If n = p^a*q^b*r^c, then a(n) = p^c*q^a*r^b.
%C A105119 If n = p^a*q^b*r^c*s^d, then a(n) = p^d*q^a*r^b*s^c.
%C A105119 The sequence is a permutation of the positive integers. The first term which is different from A069799 is a(60).
%C A105119 Inverse permutation to A225891. The fixed points are A072774 (squarefree numbers and their powers). - _Ivan Neretin_, Jul 26 2015
%H A105119 Ivan Neretin, <a href="/A105119/b105119.txt">Table of n, a(n) for n = 1..10000</a>
%H A105119 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%e A105119 a(60) = a(2^2*3*5) = 2*3^2*5 = 90.
%p A105119 f:= proc(n) local F,j,m;
%p A105119       F:= ifactors(n)[2];
%p A105119       m:= nops(F);
%p A105119       mul(F[i,1]^F[i-1,2],i=2..m)*F[1,1]^F[m,2] ;
%p A105119 end proc:
%p A105119 f(1):= 1:
%p A105119 map(f, [$1..100]); # _Robert Israel_, Jul 26 2015
%t A105119 Table[Times @@ ((ar = Transpose[FactorInteger[n]])[[1]]^RotateRight[ar[[2]]]), {n, 70}] (* _Ivan Neretin_, Jul 26 2015 *)
%o A105119 (PARI) a(n)=local(m,s);m=factor(n);s=matsize(m)[1];prod(i=2,s,m[i,1]^m[i-1,2])*m[1,1]^m[s,2] /* _Ralf Stephan_, Apr 05 2009 */
%Y A105119 Permutation of A000027(n). Cf. A069799.
%K A105119 nonn
%O A105119 1,2
%A A105119 _Yasutoshi Kohmoto_, Apr 08 2005
%E A105119 Edited by _Ralf Stephan_, Apr 05 2009
%E A105119 a(1)=1 prepended by _Ivan Neretin_, Jul 26 2015