This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A105202 #19 Aug 12 2017 13:03:02 %S A105202 1,1,2,1,1,2,1,2,3,2,1,2,1,1,2,1,2,3,2,1,2,1,2,3,2,3,1,3,2,3,2,1,2,1, %T A105202 2,3,2,1,2,1,1,2,1,2,3,2,1,2,1,2,3,2,3,1,3,2,3,2,1,2,1,2,3,2,1,2,1,2, %U A105202 3,2,3,1,3,2,3,2,3,1,3,1,2,1,3,1,3,2,3,2,3,1,3,2,3,2,1,2,1,2,3,2,1,2,1,2,3 %N A105202 Irregular triangle read by rows: row n gives the word f(f(f(...(1)))) [with n applications of f], where f is the morphism 1->{1,2,1}, 2->{2,3,2}, 3->{3,1,3}. %C A105202 Row n contains 3^n symbols. %H A105202 Antti Karttunen, <a href="/A105202/b105202.txt">Table of n, a(n) for n = 0..9840</a> %H A105202 F. M. Dekking, <a href="http://dx.doi.org/10.1016/0001-8708(82)90066-4">Recurrent sets</a>, Advances in Mathematics, vol. 44, no. 1 (1982), 78-104; page 96, section 4.10. %F A105202 Let r = A062153(1+(2*n)) [index of the row], let c = n - A003462(r) [index of the column], then a(n) = 1 + (a(A003462(r-1)+floor(c/3)) mod 3) if n ≡ 2 mod 3, otherwise a(n) = a(A003462(r-1)+floor(c/3)). - _Antti Karttunen_, Aug 12 2017 %e A105202 From _Antti Karttunen_, Aug 12 2017: (Start) %e A105202 The rows 0 .. 3 of this irregular triangle: %e A105202 1 %e A105202 1;2;1 %e A105202 1 2 1;2 3 2;1 2 1; %e A105202 1 2 1 2 3 2 1 2 1;2 3 2 3 1 3 2 3 2;1 2 1 2 3 2 1 2 1 %e A105202 (End) %t A105202 f[n_] := Nest[ Flatten[ # /. {1 -> {1, 2, 1}, 2 -> {2, 3, 2}, 3 -> {3, 1, 3}}] &, {1}, n]; Flatten[ Table[ f[n], {n, 0, 4}]] (* _Robert G. Wilson v_, Apr 12 2005 *) %o A105202 (Scheme, with memoization-macro definec) %o A105202 (definec (A105202 n) (if (zero? n) 1 (let* ((r (A062153 (+ 1 (* 2 n)))) (c (- n (A003462 r))) (p (A105202 (+ (A003462 (- r 1)) (/ (- c (modulo c 3)) 3))))) (if (= 2 (modulo n 3)) (+ 1 (modulo p 3)) p)))) %o A105202 ;; _Antti Karttunen_, Aug 12 2017 %Y A105202 Cf. A003462, A062153, A073058, A105141. %Y A105202 Each row is a prefix of A105203. %K A105202 nonn,tabf %O A105202 0,3 %A A105202 _Roger L. Bagula_, Apr 09 2005 %E A105202 More terms from _Robert G. Wilson v_, Apr 12 2005