This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A105209 #22 Jul 02 2025 16:02:02 %S A105209 1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, %T A105209 3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4, %U A105209 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5 %N A105209 Nearest integer to the cube root of n. %D A105209 Erwin Voellmy, Fünfstellige Logarithmen und Zahlentafeln, Orell Füssli Verlag, Zürich (1962). %H A105209 Seung-Jin Bang, <a href="https://www.jstor.org/stable/2324905">Problem 10212</a>, The American Mathematical Monthly, Vol. 99, No. 4 (1992), p. 361, <a href="https://www.jstor.org/stable/2975334">Nearest Integer Zeta Functions, solution to Problem 10212</a>, ibid., Vol. 101, No. 6 (1994), pp. 579-580. %F A105209 Sum_{n>=1} 1/a(n)^s = 3*zeta(s-2) + zeta(s)/4^s, for s > 3 (Seung-Jin Bang, 1992). - _Amiram Eldar_, Oct 31 2020 %e A105209 a(16) = 3 because 16^(1/3) = 2.519842... %p A105209 for n from 1 to 200 do printf(`%d,`,round(n^(1/3))) od: # _James Sellers_, Apr 21 2005 %t A105209 Round[Surd[Range[110],3]] (* _Harvey P. Dale_, Feb 28 2015 *) %o A105209 (PARI) a(n) = round(n^(1/3)); \\ _Michel Marcus_, Aug 19 2016 %o A105209 (Python) %o A105209 from sympy import integer_nthroot %o A105209 def A105209(n): return (m:=integer_nthroot(n,3)[0])+((n<<3)>=((m<<1)+1)**3) # _Chai Wah Wu_, Jun 06 2025 %Y A105209 Cf. A000194, A048766. %K A105209 easy,nonn %O A105209 1,4 %A A105209 _Pahikkala Jussi_, Apr 13 2005 %E A105209 More terms from _James Sellers_, Apr 21 2005