This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A105218 #19 Feb 06 2021 16:35:14 %S A105218 0,1,12,117,1168,12525,145836,1844017,25238592,372320793,5894109100, %T A105218 99712850061,1795703361552,34303011804997,692863434782988, %U A105218 14754105717057225,330351159979499776,7758672154410196017,190717243734190845132,4896738903385469500453 %N A105218 a(n) = Sum_{k=0..n} C(n,k)^2*(n-k)!*k^3. %C A105218 Let b(n) denote the cubes (A000578). If e.g.f. of b(n) is E(x) and a(n) = Sum{k=0..n} C(n,k)^2*(n-k)!*b(k), then e.g.f. of a(n) is E(x/(1-x))/(1-x). (Thanks to _Vladeta Jovovic_ for help.) - _Miklos Kristof_, Apr 19 2005 %H A105218 Seiichi Manyama, <a href="/A105218/b105218.txt">Table of n, a(n) for n = 0..442</a> %F A105218 E.g.f. = (x/(1-x)^2+3*x^2/(1-x)^3+x^3/(1-x)^4)*exp(x/(1-x)) - _Miklos Kristof_, Apr 19 2005 %F A105218 Recurrence: (n-2)*(n-1)^2*a(n) = (n-2)*n^2*(2*n-1)*a(n-1) - (n-1)^3*n^2*a(n-2). - _Vaclav Kotesovec_, Sep 26 2013 %F A105218 a(n) ~ n^(n+7/4)*exp(2*sqrt(n)-n-1/2)/sqrt(2) * (1 - 5/(48*sqrt(n))). - _Vaclav Kotesovec_, Sep 26 2013 %F A105218 a(n) = n*n!*hypergeom([2, 1-n], [1, 1], -1). - _Peter Luschny_, Apr 01 2015 %e A105218 b(n) = 0, 1, 8, 27, 64, 125, 216, ... %e A105218 a(3) = C(3,0)^2*3!*b(0) + C(3,1)^2*2!*b(1) + C(3,2)^2*1!*b(2) + C(3,3)^2*0!*b(3) = 1*6*0 + 9*2*1 + 9*1*8 + 1*1*27 = 0 + 18 + 72 + 27 = 117. %p A105218 seq(add(binomial(n,k)^2*(n-k)!*k^3, k=0..n),n=0..30); %p A105218 # Alternatively: %p A105218 a := n -> n*n!*hypergeom([2, 1-n], [1, 1], -1): %p A105218 seq(simplify(a(n)), n=0..19); # _Peter Luschny_, Apr 01 2015 %t A105218 CoefficientList[Series[(x/(1-x)^2+3*x^2/(1-x)^3+x^3/(1-x)^4)*E^(x/(1-x)), {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_ after _Miklos Kristof_, Sep 26 2013 *) %o A105218 (PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(x*(1+x-x^2)*exp(x/(1-x))/(1-x)^4))) \\ _Seiichi Manyama_, Feb 06 2021 %Y A105218 Cf. A000578. %K A105218 easy,nonn %O A105218 0,3 %A A105218 _Miklos Kristof_, Apr 13 2005