This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A105260 #6 Aug 21 2016 15:51:01 %S A105260 1,1,1,2,1,4,1,1,6,6,1,8,15,4,1,10,28,20,1,1,12,45,56,15,1,14,66,120, %T A105260 70,6,1,16,91,220,210,56,1,1,18,120,364,495,252,28,1,20,153,560,1001, %U A105260 792,210,8,1,22,190,816,1820,2002,924,120,1,1,24,231,1140,3060,4368,3003 %N A105260 Triangle read by rows: T(n,k)=C(2n-2k,k), n>=0, 0<=k<=floor(2n/3). %D A105260 E. Deutsch, Math. Magazine, vol. 75, No. 3, 2002, p. 228, problem 1623. %F A105260 T(n, k)=C(2n-2k, k), n>=0, 0<=k<=floor(2n/3). G.f.=1/[1-z(1+tz)^2]. %F A105260 T(n,k) = A102547(2*n,k). - _R. J. Mathar_, Aug 21 2016 %e A105260 Triangle begins: %e A105260 1; %e A105260 1; %e A105260 1,2; %e A105260 1,4,1; %e A105260 1,6,6; %e A105260 1,8,15,4; %e A105260 Row n contains 1+floor(2n/3) terms. %p A105260 T:=(n,k)->binomial(2*n-2*k,k): for n from 0 to 14 do seq(T(n,k),k=0..floor(2*n/3)) od;# yields sequence in triangular form %Y A105260 Row sums yield A002478. %K A105260 nonn,tabf %O A105260 0,4 %A A105260 _Emeric Deutsch_, Apr 14 2005