This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A105288 #33 Aug 02 2025 06:30:01 %S A105288 1,2,4,5,70,440,1055,1058,6461,6466,6469,251752,4124468,27067036, %T A105288 27067112,69709709,69709957,465769835,8179002104,145935689357, %U A105288 382465573490 %N A105288 Numbers k such that prime(k+1) == 3 (mod k). %C A105288 Integers k such that A004649(k+1) = 3. - _Michel Marcus_, Dec 30 2022 %p A105288 n:= 0: p:= 2: count:= 0: %p A105288 for n from 1 while count < 13 do %p A105288 p:= nextprime(p); %p A105288 if p-3 mod n = 0 then %p A105288 count:= count+1; %p A105288 A[count]:= n; %p A105288 fi %p A105288 od: %p A105288 seq(A[i],i=1..count); # _Robert Israel_, May 02 2018 %t A105288 bb={};Do[If[3==Mod[Prime[n+1], n], bb=Append[bb, n]], {n, 1, 200000}];bb %t A105288 Join[{1, 2}, Select[Range[2 10^7], Mod[Prime[# + 1], #]==3 &]] (* _Vincenzo Librandi_, May 02 2018 *) %o A105288 (Sage) %o A105288 def A105288(max) : %o A105288 terms = [] %o A105288 p = 3 %o A105288 for n in range(1, max+1) : %o A105288 if (p - 3) % n == 0 : terms.append(n) %o A105288 p = next_prime(p) %o A105288 return terms %o A105288 # _Eric M. Schmidt_, Feb 05 2013 %o A105288 (Magma) [1,2] cat [n: n in [1..2*10^4] | NthPrime(n+1) mod n eq 3]; // _Vincenzo Librandi_, May 02 2018 %Y A105288 Cf. A004649, A105286, A105287, A105290, A105329, A105451. %K A105288 nonn,more %O A105288 1,2 %A A105288 _Zak Seidov_, Apr 25 2005 %E A105288 First two terms inserted by _Eric M. Schmidt_, Feb 05 2013 %E A105288 a(12)-a(13) from _Robert Israel_, May 02 2018 %E A105288 a(14)-a(21) from _Giovanni Resta_, May 02 2018