This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A105329 #24 Aug 31 2024 22:02:06 %S A105329 1,2,6,7,12,14,181,1053,1057,2614,40089,40114,40117,40119,100346, %T A105329 100352,100358,251707,251742,251743,251754,251757,1617173,4124458, %U A105329 10553513,27067262,27067272,179992922,179992932,179993012,179993172,3140421806,3140421838,3140421866,3140421872,55762149076,145935689366 %N A105329 Numbers k such that prime(k+1) == 5 (mod k). %C A105329 There are no further terms up to 215000000. - _Farideh Firoozbakht_, May 13 2005 %C A105329 Integers k such that A004649(k+1) = 5. - _Michel Marcus_, Dec 30 2022 %t A105329 Do[If[5 == Mod[Prime[n + 1], n], bb = Append[bb, n]], {n, 1, 251758}]; %t A105329 bb={};Do[If[5 == Mod[Prime[n + 1], n], bb = Append[bb, n]], {n, 1, 251758}];bb (* _Farideh Firoozbakht_, May 13 2005 *) %o A105329 (Sage) %o A105329 def A105329(max) : %o A105329 terms = [] %o A105329 p = 3 %o A105329 for n in range(1, max+1) : %o A105329 if (p - 5) % n == 0 : terms.append(n) %o A105329 p = next_prime(p) %o A105329 return terms %o A105329 # _Eric M. Schmidt_, Feb 05 2013 %Y A105329 Cf. A004649, A105286, A105287, A105288, A105290, A105451. %K A105329 nonn %O A105329 1,2 %A A105329 _Zak Seidov_, Apr 30 2005 %E A105329 More terms from _Farideh Firoozbakht_, May 13 2005 %E A105329 First two terms inserted by _Eric M. Schmidt_, Feb 05 2013 %E A105329 a(28)-a(29) corrected, a(30)-a(37) added by _Max Alekseyev_, Aug 31 2024