cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105343 Elements of even index in the sequence gives A005893, points on surface of tetrahedron: 2n^2 + 2 for n > 1.

This page as a plain text file.
%I A105343 #39 Jan 23 2025 21:58:03
%S A105343 1,3,4,7,10,15,20,27,34,43,52,63,74,87,100,115,130,147,164,183,202,
%T A105343 223,244,267,290,315,340,367,394,423,452,483,514,547,580,615,650,687,
%U A105343 724,763,802,843,884,927,970,1015,1060,1107,1154,1203,1252,1303,1354,1407
%N A105343 Elements of even index in the sequence gives A005893, points on surface of tetrahedron: 2n^2 + 2 for n > 1.
%C A105343 Floretion Algebra Multiplication Program, FAMP Code: 2jesforrokseq[E*F*sig(E)] with E = + .5i' + .5j' + .5'ki' + .5'kj', F the sum of all floretion basis vectors and "sig" the swap-operator. RokType: Y[15] = Y[15] + Math.signum(Y[15])*p (internal program code)
%C A105343 May be seen as the jesforrok-transform of the zero-sequence (A000004) with respect to the floretion given in the program code.
%C A105343 Identical to A267459(n+1) for n > 0. - _Guenther Schrack_, Jun 01 2018
%H A105343 Vincenzo Librandi, <a href="/A105343/b105343.txt">Table of n, a(n) for n = 0..10000</a>
%H A105343 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1).
%F A105343 G.f.: (1 + x - 2*x^2 + x^3 + x^4)/((x+1)*(1-x)^3); a(n+2) - 2*a(n+1) + a(n) = (-1)^(n+1)*A084099(n).
%F A105343 a(n) = (1/4)*(2*n^2 + 9 - (-1)^n ), n>1. - _Ralf Stephan_, Jun 01 2007
%F A105343 Sum_{n>=0} 1/a(n) = 3/4 + tanh(sqrt(5)*Pi/2)*Pi/(2*sqrt(5)) + coth(Pi)*Pi/4. - _Amiram Eldar_, Sep 16 2022
%e A105343 G.f. = 1 + 3*x + 4*x^2 + 7*x^3 + 10*x^4 + 15*x^5 + 20*x^6 + 27*x^7 + ... - _Michael Somos_, Jun 26 2018
%t A105343 Join[{1}, LinearRecurrence[{2, 0, -2, 1}, {3, 4, 7, 10}, 60]] (* _Jean-François Alcover_, Nov 13 2017 *)
%o A105343 (Magma) [1] cat [(2*n^2 + 9 - (-1)^n) div 4: n in [1..60]]; // _Vincenzo Librandi_, Oct 10 2011
%o A105343 (PARI) {a(n) = if( n<1, n==0, (2*n^2 + 10)\4)}; /* _Michael Somos_, Jun 26 2018 */
%Y A105343 Cf. A005893, A084099, A267459.
%K A105343 easy,nonn
%O A105343 0,2
%A A105343 _Creighton Dement_, Apr 30 2005