A105373 Square array by antidiagonals of number of straight lines with n points in a k-dimensional hypercube with n points on each edge.
1, 1, 1, 1, 6, 1, 1, 28, 8, 1, 1, 120, 49, 10, 1, 1, 496, 272, 76, 12, 1, 1, 2016, 1441, 520, 109, 14, 1, 1, 8128, 7448, 3376, 888, 148, 16, 1, 1, 32640, 37969, 21280, 6841, 1400, 193, 18, 1, 1, 130816, 192032, 131776, 51012, 12496, 2080, 244, 20, 1, 1, 523776
Offset: 1
Examples
Rows start: 1, 1, 1, 1, 1, 1, ...; 1, 6, 28, 120, 496, 2016, ...; 1, 8, 49, 272, 1441, 7448, ...; 1, 10, 76, 520, 3376, 21280, ...; 1, 12, 109, 888, 6841, 51012, ...; etc. T(5,3)=109 because in a 5 X 5 X 5 cube there are 25 columns, 25 linear rows in one direction, 25 linear rows in another direction, 5 short diagonals in each of 6 directions and 4 long diagonals; and 3*25 + 6*5 + 4 = 109.
Crossrefs
Formula
T(1, k)=1. For n>1: T(n, k) = ((n+2)^k-n^k)/2 = (n+2)*T(n, k-1)+n^(k-1) = A102728(k, n+1).