A105383 Primes between 10^9 and 2^31 obtained from merging 10 successive digits in the decimal expansion of zeta(2) = Pi^2/6, taken modulo 2^32.
1902619757, 1896233719, 2025479923, 1979084773, 1834487573, 2069040007, 1357689757, 1422433483, 1421193281, 1865610371, 1664088953, 1716574481, 1524418627, 2018846497, 2028620161, 1384352219, 1828868887, 1485949159
Offset: 1
Examples
From _Jianing Song_, Mar 14 2021: (Start) 1902619757 is a term since 1902619757 + 2^32 = 6197587053 is the concatenation of A013661(92) to A013661(101). 1896233719 is a term since it is the concatenation of A013661(108) to A013661(117). (End)
Links
- Simon Plouffe, 10000 digits of Zeta(2).
- Eric Weisstein, Riemann Zeta Function.
Crossrefs
Cf. A013661 (decimal expansion of Pi^2/6).
Cf. A103752 (a similar erroneous version).
Cf. (for Pi) A198175, A198170, A104824, A104825, A104826, A198171, A198172, A198173, A198174 and A104830 (a variant).
Programs
-
PARI
A105383(n, x=Pi^2/6, m=10, silent=0)={m=10^m; for(k=1, default(realprecision), (isprime(p=x\.1^k%m%2^32)&&p*10>m&&p<2^31)||next; silent||print1(p", "); n--||return(p))} \\ Use e.g. \p999 to set precision to 999 digits. - M. F. Hasler, Nov 01 2014
Extensions
Definition updated by M. F. Hasler, Nov 01 2014
Comments