This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A105384 #24 Dec 14 2023 05:17:43 %S A105384 0,1,-1,0,0,0,1,-1,0,0,0,1,-1,0,0,0,1,-1,0,0,0,1,-1,0,0,0,1,-1,0,0,0, %T A105384 1,-1,0,0,0,1,-1,0,0,0,1,-1,0,0,0,1,-1,0,0,0,1,-1,0,0,0,1,-1,0,0,0,1, %U A105384 -1,0,0,0,1,-1,0,0,0,1,-1,0,0,0,1,-1,0,0,0,1,-1,0,0,0,1,-1,0,0,0,1,-1,0,0,0,1,-1,0,0,0,1,-1,0,0 %N A105384 Expansion of x/(1 + x + x^2 + x^3 + x^4). %C A105384 Inverse binomial transform of A103311. A transform of the Fibonacci numbers: apply the Chebyshev transform (1/(1+x^2), x/(1+x^2)) followed by the binomial involution (1/(1-x),-x/(1-x)) followed by the inverse binomial transform (1/(1+x), x/(1+x)) (expressed as Riordan arrays) to the -F(n); equivalently, apply (1/(1+x^2),-x/(1+x^2)) to -F(n). Periodic {0,1,-1,0,0}. %C A105384 Essentially the same as A010891. - _R. J. Mathar_, Apr 07 2008 %H A105384 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-1,-1,-1). %F A105384 Euler transform of length 5 sequence [ -1, 0, 0, 0, 1]. %F A105384 G.f.: x(1-x)/(1-x^5); %F A105384 a(n) = -sqrt(1/5 + 2*sqrt(5)/25)*cos(4*Pi*n/5 + Pi/10) + sqrt(5)*sin(4*Pi*n/5 + Pi/10)/5 + sqrt(1/5 - 2*sqrt(5)/25)*cos(2*Pi*n/5 + 3*Pi/10) + sqrt(5)*sin(2*Pi*n/5 + 3*Pi/10)/5. %F A105384 a(n) = A010891(n-1). - _R. J. Mathar_, Apr 07 2008 %F A105384 a(n) + a(n-1) = A092202(n). - _R. J. Mathar_, Jun 23 2021 %K A105384 easy,sign %O A105384 0,1 %A A105384 _Paul Barry_, Apr 02 2005 %E A105384 Corrected by _N. J. A. Sloane_, Nov 05 2005