cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105389 Primes of the form x^2 + 32 y^2, also primes p with h(-p) divisible by 8.

This page as a plain text file.
%I A105389 #26 Apr 14 2019 10:55:39
%S A105389 41,113,137,257,313,337,353,409,457,521,569,577,593,761,809,857,881,
%T A105389 953,1129,1153,1201,1217,1249,1321,1553,1601,1657,1777,1889,1993
%N A105389 Primes of the form x^2 + 32 y^2, also primes p with h(-p) divisible by 8.
%D A105389 Barrucand, P. and Cohn, H. Note on primes of the form x^2 + 32 y^2, class number and residuacity, Journal fur die reine und angewandte Mathematik, v.238, pp. 67-70.
%H A105389 Vincenzo Librandi and Ray Chandler, <a href="/A105389/b105389.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H A105389 S. R. Finch, <a href="https://arxiv.org/abs/math/0701251">Powers of Euler's q-Series</a>, arXiv:math/0701251 [math.NT], 2007.
%H A105389 Steven R. Finch, <a href="/A000924/a000924.pdf">Class number theory</a> [Cached copy, with permission of the author]
%H A105389 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%e A105389 41 = 9 + 32 * 1, 113 = 81 + 32 *1, 137 = 9 + 32*4
%t A105389 QuadPrimes2[1, 0, 32, 10000] (* see A106856 *)
%t A105389 (* Second program: *)
%t A105389 max = 10^4; Table[yy = {y, 1, Floor[Sqrt[(max - x^2)/32]]}; Table[x^2 + 32 y^2, yy // Evaluate], {x, 1, Floor[Sqrt[max]]}] // Flatten // Union // Select[#, # <= max && PrimeQ[#]&]& (* _Jean-François Alcover_, Oct 04 2018 *)
%K A105389 nonn
%O A105389 1,1
%A A105389 _John L. Drost_, May 01 2005