cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105392 Frobenius number of the subsemigroup of the natural numbers generated by successive pairs of Lucas numbers.

This page as a plain text file.
%I A105392 #29 Aug 15 2025 04:28:30
%S A105392 0,5,17,59,169,475,1287,3449,9149,24155,63557,166919,437839,1147645,
%T A105392 3006777,7875419,20623889,54003395,141397847,370208849,969258949,
%U A105392 2537616955,6643671117,17393524559,45537109919,119218140725
%N A105392 Frobenius number of the subsemigroup of the natural numbers generated by successive pairs of Lucas numbers.
%H A105392 R. Fröberg, C. Gottlieb and R. Häggkvist, <a href="https://gdz.sub.uni-goettingen.de/id/PPN362162808_0035">On numerical semigroups</a>, Semigroup Forum, 35 (1987), 63-83 (for definition of Frobenius number).
%H A105392 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LucasNumber.html">Lucas numbers.</a>
%F A105392 a(n) = (L(n)-1)*(L(n+1)-1)-1 where L(n) = A000204(n).
%F A105392 a(n) = A002878(n)-A000204(n+2)+(-1)^n, for n>1. [_Ralf Stephan_, Nov 15 2010, index shifted by _R. J. Mathar_, Nov 16 2010]
%F A105392 G.f.: x^2*(5+2*x+3*x^2-x^4)/(1+x)/(1-3*x+x^2)/(1-x-x^2). [_Colin Barker_, Feb 17 2012]
%e A105392 a(3) = 17 because the 3rd and 4th Lucas numbers are 4 and 7, so
%e A105392 a(3) = (4-1)*(7-1)-1 = 17. Or, a(3)=17 because 17 is the largest positive
%e A105392 integer that is not a nonnegative linear combination of 4 and 7.
%p A105392 A000204 := proc(n) option remember; if n = 1 then 1; elif n = 2 then 3; else procname(n-1)+procname(n-2) ; end if; end proc:
%p A105392 A105392 := proc(n) A000204(2*n+1)-A000204(n+2)+(-1)^n ; end proc:
%p A105392 seq(A105392(n),n=0..20) ; # _R. J. Mathar_, Nov 16 2010
%Y A105392 Cf. A000204, A059769.
%K A105392 easy,nonn
%O A105392 1,2
%A A105392 _Jonathan Vos Post_, May 01 2005