cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105393 Decimal expansion of sum of reciprocals of squares of Fibonacci numbers.

This page as a plain text file.
%I A105393 #50 Feb 16 2025 08:32:57
%S A105393 2,4,2,6,3,2,0,7,5,1,1,6,7,2,4,1,1,8,7,7,4,1,5,6,9,4,1,2,9,2,6,6,2,0,
%T A105393 3,7,4,3,2,0,2,5,9,7,7,4,5,1,3,8,3,0,9,0,5,1,1,0,1,0,2,8,3,4,5,4,6,6,
%U A105393 1,1,9,3,7,5,1,1,1,9,7,8,6,3,6,8,7,7,5,3,8,9,8,1,5,2,1,5,3,6,3,6,3,7,9,2,1
%N A105393 Decimal expansion of sum of reciprocals of squares of Fibonacci numbers.
%C A105393 Known to be transcendental. - _Benoit Cloitre_, Jan 07 2006
%C A105393 Compare with Sum_{n >= 1} 1/(F(n)^2 + 1) = (5*sqrt(5) - 3)/6 and Sum_{n >= 3} 1/(F(n)^2 - 1) = (43 - 15*sqrt(5))/18. - _Peter Bala_, Nov 19 2019
%C A105393 Duverney et al. (1997) proved that this constant is transcendental. - _Amiram Eldar_, Oct 30 2020
%H A105393 Richard André-Jeannin, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k5686125p/f9.image">Irrationalité de la somme des inverses de certaines suites récurrentes</a>, C. R. Acad. Sci. Paris Ser. I Math., Vol. 308, No. 19 (1989), pp. 539-541.
%H A105393 Daniel Duverney, Keiji Nishioka, Kumiko Nishioka and Iekata Shiokawa, <a href="http://doi.org/10.3792/pjaa.73.140">Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers</a>, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Vol. 73, No. 7 (1997), pp. 140-142.
%H A105393 Michel Waldschmidt, <a href="https://doi.org/10.1007/978-0-387-78510-3_7">Elliptic functions and transcendence</a>, in: Krishnaswami Alladi (ed.), Surveys in number theory, Springer, New York, NY, 2008, pp. 143-188, <a href="http://www.math.jussieu.fr/~miw/articles/pdf/SurveyTrdceEllipt2006.pdf">alternative link</a>. See Corollary 51.
%H A105393 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FibonacciNumber.html">Fibonacci Number</a>.
%H A105393 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LucasNumber.html">Lucas Number</a>.
%H A105393 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ReciprocalFibonacciConstant.html">Reciprocal Fibonacci Constant</a>.
%H A105393 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%F A105393 Equals Sum_{k>=1} 1/F(k)^2 = 2.4263207511672411877... - _Benoit Cloitre_, Jan 07 2006
%e A105393 2.426320751167241187741569...
%t A105393 RealDigits[Total[1/Fibonacci[Range[500]]^2],10,120][[1]] (* _Harvey P. Dale_, May 31 2016 *)
%o A105393 (PARI) sum(k=1,500,1./fibonacci(k)^2) \\ _Benoit Cloitre_, Jan 07 2006
%Y A105393 Cf. A000045, A007598 (squares of Fibonacci numbers).
%Y A105393 Cf. A079586, A093540, A105394.
%K A105393 cons,easy,nonn
%O A105393 1,1
%A A105393 _Jonathan Vos Post_, Apr 04 2005
%E A105393 More terms from _Benoit Cloitre_, Jan 07 2006