cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105394 Decimal expansion of sum of reciprocals of squares of Lucas numbers.

This page as a plain text file.
%I A105394 #43 Feb 16 2025 08:32:57
%S A105394 1,2,0,7,2,9,1,9,9,6,9,8,5,7,4,7,0,7,4,4,1,7,2,0,4,1,8,4,2,5,7,6,9,9,
%T A105394 9,4,5,3,0,6,9,2,1,4,5,4,0,1,9,0,3,6,3,7,6,9,5,1,3,1,1,5,9,4,2,2,1,2,
%U A105394 2,4,0,0,1,5,4,0,7,0,3,5,7,7,6,1,6,7,7,6,5,5,9,7,8,6,8,8,9,9,9,2
%N A105394 Decimal expansion of sum of reciprocals of squares of Lucas numbers.
%C A105394 This constant is transcendental (Duverney et al., 1997). - _Amiram Eldar_, Oct 30 2020
%D A105394 Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Wiley, 1987, p. 97.
%H A105394 Richard André-Jeannin, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k5686125p/f9.image">Irrationalité de la somme des inverses de certaines suites récurrentes</a>, C. R. Acad. Sci. Paris Ser. I Math., Vol. 308, No. 19 (1989), pp. 539-541.
%H A105394 Paul S. Bruckman,, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/20-4/advanced20-4.pdf">Problem H-347</a>, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 20, No. (1982), p. 372; <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/22-1/advanced22-1.pdf">It All Adds Up</a>, Solution to Problem H-347 by the proposer, ibid., Vol. 22, No. 1 (1984), pp. 94-96.
%H A105394 Daniel Duverney, Keiji Nishioka, Kumiko Nishioka and Iekata Shiokawa, <a href="http://doi.org/10.3792/pjaa.73.140">Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers</a>, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Vol. 73, No. 7 (1997), pp. 140-142.
%H A105394 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LucasNumber.html">Lucas Number</a>.
%H A105394 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FibonacciNumber.html">Fibonacci Number</a>.
%H A105394 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ReciprocalFibonacciConstant.html">Reciprocal Fibonacci Constant</a>.
%H A105394 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%F A105394 Equals Sum_{n >= 1} 1/L(n)^2.
%F A105394 Equals (1/8)*( theta_3(beta)^4 - 1 ), where beta = (3 - sqrt(5))/2 and theta_3(q) = 1 + 2*Sum_{n >= 1} q^(n^2) is a theta function. See Borwein and Borwein, Exercise 7(f), p. 97. - _Peter Bala_, Nov 13 2019
%F A105394 Equals c*(2*c+1), where c = A153415 (follows from the identity Sum_{n=-oo..oo} 1/L(n^2) = (Sum_{n=-oo..oo} 1/L(2*n))^2, see Bruckman, 1982). - _Amiram Eldar_, Jan 27 2022
%e A105394 1.207291996985747074417204...
%t A105394 f[n_] := f[n] = RealDigits[ Sum[ 1/LucasL[k]^2, {k, 1, n}], 10, 100] // First; f[n=100]; While[f[n] != f[n-100], n = n+100]; f[n] (* _Jean-François Alcover_, Feb 13 2013 *)
%Y A105394 Cf. A000032, A001254 (squares of Lucas numbers).
%Y A105394 Cf. A079586, A093540, A105393, A153415.
%K A105394 cons,easy,nonn
%O A105394 1,2
%A A105394 _Jonathan Vos Post_, Apr 04 2005