cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105410 Numbers k such that prime(k)-2 and prime(k+3)-2 are both primes.

This page as a plain text file.
%I A105410 #19 Oct 04 2024 06:56:16
%S A105410 3,8,11,18,50,58,114,174,207,210,213,254,263,266,316,321,344,396,406,
%T A105410 461,493,496,499,543,556,582,614,626,644,724,727,741,847,932,1099,
%U A105410 1102,1118,1121,1233,1236,1261,1285,1443,1616,1619,1640,1705,1710,1783,1792
%N A105410 Numbers k such that prime(k)-2 and prime(k+3)-2 are both primes.
%H A105410 Amiram Eldar, <a href="/A105410/b105410.txt">Table of n, a(n) for n = 1..10000</a>
%t A105410 Select[Range[2000],PrimeQ[Prime[#]-2]&&PrimeQ[Prime[#+3]-2]&] (* _Harvey P. Dale_, Jun 02 2011 *)
%o A105410 (PARI) pnpk(n, m=3, k=2) = { local(x, v1, v2); for(x=1, n, v1 = prime(x)-k; v2 = prime(x+m)-k; if(isprime(v1)&isprime(v2), print1(x, ", ") ) ) ; } \\ corrected by _Amiram Eldar_, Oct 04 2024
%o A105410 (PARI) lista(pmax) = {my(k = 1, p = primes(5)); forprime(p1 = p[#p], pmax, k++; p[#p] = p1; if(p[2]- p[1] == 2 && p[5] - p[4] == 2, print1(k, ", ")); for(i = 1, #p-1, p[i] = p[i+1]));} \\ _Amiram Eldar_, Oct 04 2024
%Y A105410 Cf. A105409, A105411, A105412, A105413, A105414.
%K A105410 nonn
%O A105410 1,1
%A A105410 _Cino Hilliard_, May 02 2005
%E A105410 Offset corrected by _Amiram Eldar_, Oct 04 2024