cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105419 Decimal expansion of the arc length of the sine or cosine curve for one full period.

This page as a plain text file.
%I A105419 #15 Jun 06 2025 08:05:11
%S A105419 7,6,4,0,3,9,5,5,7,8,0,5,5,4,2,4,0,3,5,8,0,9,5,2,4,1,6,4,3,4,2,8,8,6,
%T A105419 5,8,3,8,1,9,9,3,5,2,2,9,2,9,4,5,4,9,4,4,2,1,6,0,9,9,3,3,1,3,4,9,4,3,
%U A105419 9,1,6,0,2,4,2,8,6,5,9,8,4,2,1,3,2,3,6,2,1,7,8,9,0,2,4,4,4,9,6,5,6,4,4,0,8
%N A105419 Decimal expansion of the arc length of the sine or cosine curve for one full period.
%D A105419 Howard Anton, Irl C. Bivens, Stephen L. Davis, Calculus, Early Transcendentals, 7th Edition, John Wiley & Sons, Inc., NY, Section 7.4 Length of a Plane Curve, page 489.
%F A105419 Equals Integral_{x=0..2*Pi} sqrt(1+cos(x)^2) dx.
%F A105419 Also equals 4*B+Pi/B where B is the lemniscate constant A076390, or sqrt(2/Pi)*(2*gamma(3/4)^4 + Pi^2)/gamma(3/4)^2. - _Jean-François Alcover_, Apr 17 2013
%e A105419 I=7.640395578055424035809524164342886583819935229294549442160993313...
%p A105419 evalf(4*sqrt(2)*EllipticE(1/sqrt(2)), 120); # _Vaclav Kotesovec_, Apr 22 2015
%t A105419 RealDigits[ NIntegrate[ Sqrt[1 + Cos[x]^2], {x, 0, 2Pi}, MaxRecursion -> 12, WorkingPrecision -> 128], 10, 111][[1]]
%t A105419 RealDigits[ N[ 4*Sqrt[2]*EllipticE[1/2], 105]][[1]] (* _Jean-François Alcover_, Nov 08 2012 *)
%K A105419 cons,nonn
%O A105419 1,1
%A A105419 _Robert G. Wilson v_, Apr 06 2005