cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105441 Numbers with at least two odd prime factors (not necessarily distinct).

This page as a plain text file.
%I A105441 #31 Feb 02 2025 19:59:25
%S A105441 9,15,18,21,25,27,30,33,35,36,39,42,45,49,50,51,54,55,57,60,63,65,66,
%T A105441 69,70,72,75,77,78,81,84,85,87,90,91,93,95,98,99,100,102,105,108,110,
%U A105441 111,114,115,117,119,120,121,123,125,126,129,130,132,133,135,138,140,141
%N A105441 Numbers with at least two odd prime factors (not necessarily distinct).
%C A105441 Also polite numbers (A138591) that can be expressed as the sum of two or more consecutive integers in more than one ways. For example 9=4+5 and 9=2+3+4. Also 15=7+8, 15=4+5+6 and 15=1+2+3+4+5. - _Jayanta Basu_, Apr 30 2013
%H A105441 Charles R Greathouse IV, <a href="/A105441/b105441.txt">Table of n, a(n) for n = 1..10000</a>
%F A105441 A087436(a(n)) > 1.
%F A105441 A001227(a(n)) > 2. [_Reinhard Zumkeller_, May 01 2012]
%t A105441 opf3Q[n_]:=Count[Flatten[Table[First[#],{Last[#]}]&/@FactorInteger[n]], _?OddQ]>1 (* _Harvey P. Dale_, Jun 13 2011 *)
%o A105441 (PARI) upTo(lim)=my(v=List(),p=7,m);forprime(q=8,lim,forstep(n=p+2,q-2,2,m=n;while(m<=lim,listput(v,m);m<<=1));p=q);forstep(n=p+2,lim,2,listput(v,n));vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Aug 08 2011
%o A105441 (PARI) is(n)=n>>=valuation(n,2); !isprime(n) && n>1 \\ _Charles R Greathouse IV_, Apr 30 2013
%o A105441 (Haskell)
%o A105441 a105441 n = a105441_list !! (n-1)
%o A105441 a105441_list = filter ((> 2) . a001227) [1..]
%o A105441 -- _Reinhard Zumkeller_, May 01 2012
%o A105441 (Python)
%o A105441 from sympy import primepi
%o A105441 def A105441(n):
%o A105441     def f(x): return int(n+1+sum(primepi(x>>i) for i in range(x.bit_length())))
%o A105441     m, k = n, f(n)
%o A105441     while m != k: m, k = k, f(k)
%o A105441     return m # _Chai Wah Wu_, Feb 02 2025
%Y A105441 Complement of A093641; A093642 is a subsequence.
%Y A105441 Cf. A001227, A087436, A138591.
%K A105441 nonn,easy
%O A105441 1,1
%A A105441 _Reinhard Zumkeller_, Apr 09 2005