cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105446 Number of symbols in the Roman Fibonacci number representation of n.

This page as a plain text file.
%I A105446 #12 Feb 16 2025 08:32:57
%S A105446 1,1,1,2,1,2,2,1,2,2,2,2,1,2,2,2,3,2,2,2,1,2,2,2,3,2,3,3,2,3,2,2,2,1,
%T A105446 2,2,2,3,2,3,3,2,3,3,3,3,2,3,3,2,3,2,2,2,1,2,2,2,3,2,3,3,2,3,3,3,3,2,
%U A105446 3,3,3,4,3,3,3,2,3,3,3,4
%N A105446 Number of symbols in the Roman Fibonacci number representation of n.
%C A105446 The Roman Fibonacci numbers are composed from the values of the Fibonacci Numbers (A000045) with the grammar of the Roman Numerals (A006968) and a few rules to disambiguate.
%C A105446 The alphabet: {1, 2, 3, 5, 8, A=13, B=21, C=34, D=55, E=89, F=144, ...}.
%C A105446 Rule one: of the infinite set of representations of integers by this grammar, always restrict to the subset of those with shortest length.
%C A105446 Rule two: if there are two or more in the subset of shortest representations, restrict to the subset with fewest subtractions [A31 preferred to 188, B31 preferred to 1AA, CA preferred to 8D, DB preferred to AE].
%C A105446 Rule three: if there are two or more representations per Rules one and two, restrict to the subset with the most duplications of characters [22 preferred to 31, 33 preferred to 51, 55 preferred to 82, 88 preferred to A3, BBB preferred to D53, CC preferred to BE]. We do not need a Rule four for a while...
%C A105446 Lemma: no Roman Fibonacci number requires three consecutive instances of the same symbol. Proof: 3*F(i) = F(i+2) + F(i-2).
%C A105446 Question: what is the asymptotic length of the Roman Fibonacci numbers?
%D A105446 Cajori, F. A History of Mathematical Notations, 2 vols. Bound as One, Vol. 1: Notations in Elementary Mathematics. New York: Dover, pp. 30-37, 1993.
%D A105446 Menninger, K. Number Words and Number Symbols: A Cultural History of Numbers. New York: Dover, pp. 44-45 and 281, 1992.
%D A105446 Neugebauer, O. The Exact Sciences in Antiquity, 2nd ed. New York: Dover, pp. 4-5, 1969.
%H A105446 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RomanNumerals.html">Roman Numerals</a>.
%H A105446 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FibonacciNumber.html">Fibonacci Numbers</a>.
%F A105446 a(n) = number of symbols in the Roman Fibonacci number representation of n, as defined in "Comments." a(n) = 1 iff n is an element of A000045. a(n) = 2 iff the shortest Roman Fibonacci number representation of n is as the sum or difference of two elements of A000045 and n is not an element of A000045.
%e A105446 a(1) = 1 because 1 is a Fibonacci number, equal to its own representation as a Roman Fibonacci number.
%e A105446 a(4) = 2 because 4 is not a Fibonacci number, but can be represented as the sum or difference of two Fibonacci numbers, with its Roman Fibonacci number representation being "22" (not "31" per rule three).
%e A105446 a(17) = 3 because the Roman Fibonacci number representation of 17 has three symbols, namely "A22" (not "188" per rule two).
%e A105446 a(80) = 4 because the Roman Fibonacci number representation of 80 has four symbols, namely "DB22".
%Y A105446 A105447 = integers with A105446(n) = 2. A105448 = integers with A105446(n) = 3. A105449 = integers with A105446(n) = 4. A105450 = integers with A105446(n) = 5. A023150 = integers with A105446(n) = 6. A105452 = integers with A105446(n) = 7. A105453 = integers with A105446(n) = 8. A105454 = integers with A105446(n) = 9. A105455 = integers with A105446(n) = 10.
%Y A105446 Cf. A000045, A006968.
%Y A105446 Appears to be a duplicate of A058978.
%K A105446 base,easy,nonn
%O A105446 1,4
%A A105446 _Jonathan Vos Post_, Apr 09 2005