A105474 Triangle read by rows: T(n,k) is number of compositions of n into k parts when each odd part can be of two kinds.
2, 1, 4, 2, 4, 8, 1, 9, 12, 16, 2, 8, 30, 32, 32, 1, 14, 37, 88, 80, 64, 2, 12, 66, 136, 240, 192, 128, 1, 19, 75, 257, 440, 624, 448, 256, 2, 16, 116, 352, 890, 1312, 1568, 1024, 512, 1, 24, 126, 564, 1401, 2844, 3696, 3840, 2304, 1024, 2, 20, 180, 720, 2370, 5004
Offset: 1
Examples
T(4,2)=9 because we have (1,3),(1',3),(1,3'),(1',3'),(3,1),(3',1),(3,1'),(3',1') and (2,2). Triangle begins: 2; 1,4; 2,4,8; 1,9,12,16; 2,8,30,32,32;
Crossrefs
Row sums yield A052945.
Programs
-
Maple
G:=t*z*(2+z)/(1-2*t*z-z^2-t*z^2): Gser:=simplify(series(G,z=0,14)): for n from 1 to 12 do P[n]:=sort(coeff(Gser,z^n)) od: for n from 1 to 12 do seq(coeff(P[n],t^k),k=1..n) od; # yields sequence in triangular form
Formula
G.f.=tz(2+z)/(1-2tz-z^2-tz^2).