cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105477 Triangle read by rows: T(n,k) is the number of compositions of n into k parts when there are two kinds of part 2.

Original entry on oeis.org

1, 2, 1, 1, 4, 1, 1, 6, 6, 1, 1, 6, 15, 8, 1, 1, 7, 23, 28, 10, 1, 1, 8, 30, 60, 45, 12, 1, 1, 9, 39, 98, 125, 66, 14, 1, 1, 10, 49, 144, 255, 226, 91, 16, 1, 1, 11, 60, 202, 437, 561, 371, 120, 18, 1, 1, 12, 72, 272, 685, 1128, 1092, 568, 153, 20, 1, 1, 13, 85, 355, 1015, 1995, 2555
Offset: 1

Views

Author

Emeric Deutsch, Apr 09 2005

Keywords

Comments

Triangle T(n,k), 1 <= k <= n, given by (0, 2, -3/2, -1/6, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. Triangle T(n,k), 0 <= k <= n, is the Riordan array (1, x*(1+x-x^2)/(1-x)). - Philippe Deléham, Jan 25 2012

Examples

			T(4,2)=6 because we have (1,3),(3,1),(2,2),(2,2'),(2',2) and (2',2').
Triangle begins:
  1;
  2,  1;
  1,  4,  1;
  1,  6,  6,  1;
  1,  6, 15,  8,  1;
From _Philippe Deléham_, Jan 25 2012: (Start)
Triangle T(n,k) given by (0, 2, -3/2, -1/6, 2/3, 0, 0, 0, ...) DELTA (1,0,0,0,0,...) begins:
  1;
  0,  1;
  0,  2,  1;
  0,  1,  4,  1;
  0,  1,  6,  6,  1;
  0,  1,  6, 15,  8,  1; ... (End)
		

Crossrefs

Row sums yield A077998.
Diagonals: A000012, A005843, A000384.

Programs

  • Maple
    G:=t*z*(1+z-z^2)/(1-z-t*z-t*z^2+t*z^3): Gser:=simplify(series(G,z=0,15)): for n from 1 to 14 do P[n]:=coeff(Gser,z^n) od: for n from 1 to 13 do seq(coeff(P[n],t^k),k=1..n) od; # yields sequence in triangular form

Formula

G.f. = t*z*(1+z-z^2)/(1-z-t*z-t*z^2+t*z^3).
T(n,k) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-2j-1, k-j-1). - Emeric Deutsch, Aug 06 2006
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) - T(n-3,k-1), n > 1. - Philippe Deléham, Jan 25 2012