A105477 Triangle read by rows: T(n,k) is the number of compositions of n into k parts when there are two kinds of part 2.
1, 2, 1, 1, 4, 1, 1, 6, 6, 1, 1, 6, 15, 8, 1, 1, 7, 23, 28, 10, 1, 1, 8, 30, 60, 45, 12, 1, 1, 9, 39, 98, 125, 66, 14, 1, 1, 10, 49, 144, 255, 226, 91, 16, 1, 1, 11, 60, 202, 437, 561, 371, 120, 18, 1, 1, 12, 72, 272, 685, 1128, 1092, 568, 153, 20, 1, 1, 13, 85, 355, 1015, 1995, 2555
Offset: 1
Examples
T(4,2)=6 because we have (1,3),(3,1),(2,2),(2,2'),(2',2) and (2',2'). Triangle begins: 1; 2, 1; 1, 4, 1; 1, 6, 6, 1; 1, 6, 15, 8, 1; From _Philippe Deléham_, Jan 25 2012: (Start) Triangle T(n,k) given by (0, 2, -3/2, -1/6, 2/3, 0, 0, 0, ...) DELTA (1,0,0,0,0,...) begins: 1; 0, 1; 0, 2, 1; 0, 1, 4, 1; 0, 1, 6, 6, 1; 0, 1, 6, 15, 8, 1; ... (End)
Programs
-
Maple
G:=t*z*(1+z-z^2)/(1-z-t*z-t*z^2+t*z^3): Gser:=simplify(series(G,z=0,15)): for n from 1 to 14 do P[n]:=coeff(Gser,z^n) od: for n from 1 to 13 do seq(coeff(P[n],t^k),k=1..n) od; # yields sequence in triangular form
Formula
G.f. = t*z*(1+z-z^2)/(1-z-t*z-t*z^2+t*z^3).
T(n,k) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-2j-1, k-j-1). - Emeric Deutsch, Aug 06 2006
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) - T(n-3,k-1), n > 1. - Philippe Deléham, Jan 25 2012
Comments