This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A105495 #34 Jun 03 2024 12:25:50 %S A105495 1,4,1,9,8,1,16,34,12,1,25,104,75,16,1,36,259,328,132,20,1,49,560, %T A105495 1134,752,205,24,1,64,1092,3312,3338,1440,294,28,1,81,1968,8514,12336, %U A105495 7815,2456,399,32,1,100,3333,19800,39572,35004,15765,3864,520,36,1,121,5368 %N A105495 Triangle read by rows: T(n,k) is the number of compositions of n into k parts when parts equal to q are of q^2 kinds. %C A105495 Triangle T(n,k)= %C A105495 1. Riordan Array (1,(x+x^2)/(1-x)^3) without first column. %C A105495 2. Riordan Array ((1+x)/(1-x)^3,(x+x^2)/(1-x)^3) numbering triangle (0,0). %C A105495 [_Vladimir Kruchinin_, Nov 25 2011] %C A105495 Triangle T(n,k), 1<=k<=n, given by (0, 4, -7/4, 17/28, -32/119, 7/17, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Jan 20 2012 %C A105495 T is the convolution triangle of the squares (A000290). - _Peter Luschny_, Oct 19 2022 %F A105495 G.f.: t*z*(1+z)/((1-z)^3-t*z*(1+z)). %F A105495 From _Vladimir Kruchinin_, Nov 25 2011: (Start) %F A105495 G.f.: ((x+x^2)/(1-x)^3)^k = Sum_{n>=k} T(n,k)*x^n. %F A105495 T(n,k) = Sum{i=0..n-k} binomial(k,i)*binomial(n+2*k-i-1,3*k-1). (End) %e A105495 T(3,2)=8 because we have (1,2),(1,2'),(1,2"),(1,2'"),(2,1),(2',1),(2",1) and (2'",1). %e A105495 Triangle begins: %e A105495 1; %e A105495 4,1; %e A105495 9,8,1; %e A105495 16,34,12,1; %e A105495 25,104,75,16,1; %e A105495 ... %e A105495 Triangle (0, 4, -7/4, 17/28, -32/119, 7/17, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins : %e A105495 1 %e A105495 0, 1 %e A105495 0, 4, 1 %e A105495 0, 9, 8, 1 %e A105495 0, 16, 34, 12, 1 %e A105495 0, 25, 104, 75, 16, 1 %e A105495 ... %p A105495 G:=t*z*(1+z)/((1-z)^3-t*z*(1+z)): Gser:=simplify(series(G,z=0,13)): for n from 1 to 12 do P[n]:=coeff(Gser,z^n) od: for n from 1 to 11 do seq(coeff(P[n],t^k), k=1..n) od; # yields sequence in triangular form %p A105495 # Alternatively: %p A105495 T := proc(k,n) option remember; %p A105495 if k=n then 1 elif k=0 then 0 else add(i^2*T(k-1,n-i), i=1..n-k+1) fi end: %p A105495 A105495 := (n,k) -> T(k,n): %p A105495 for n from 1 to 9 do seq(A105495(n,k), k=1..n) od; # _Peter Luschny_, Mar 12 2016 %p A105495 # Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left. %p A105495 PMatrix(10, n -> n^2); # _Peter Luschny_, Oct 19 2022 %t A105495 nn=8;a=(x+x^2)/(1-x)^3;CoefficientList[Series[1/(1-y a),{x,0,nn}],{x,y}]//Grid (* _Geoffrey Critzer_, Aug 31 2012 *) %o A105495 (Maxima) %o A105495 T(n,k):=sum(binomial(k,i)*binomial(n+2*k-i-1,3*k-1),i,0,n-k); /* _Vladimir Kruchinin_, Nov 25 2011 */ %o A105495 (SageMath) %o A105495 @cached_function %o A105495 def T(k,n): %o A105495 if k==n: return 1 %o A105495 if k==0: return 0 %o A105495 return sum(i^2*T(k-1,n-i) for i in (1..n-k+1)) %o A105495 A105495 = lambda n,k: T(k, n) %o A105495 for n in (0..6): print([A105495(n, k) for k in (0..n)]) # _Peter Luschny_, Mar 12 2016 %Y A105495 Cf. A000290, A084938. %Y A105495 Row sums yield A033453. %K A105495 nonn,tabl %O A105495 1,2 %A A105495 _Emeric Deutsch_, Apr 10 2005