This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A105571 #27 Sep 08 2022 08:45:17 %S A105571 8,12,23,24,36,37,53,60,67,84,89,93,113,117,120,121,131,143,144,157, %T A105571 185,203,204,207,211,215,216,217,219,251,276,289,293,297,300,301,303, %U A105571 307,321,325,337,360,363,379,384,393,396,405,409,413,415,449,456,471,480 %N A105571 Numbers m such that m - 2 and m + 2 are semiprimes. %C A105571 A001222(a(n)-2) = A001222(a(n)+2) = 2. %C A105571 The even members of the sequence are A054735. - _Robert Israel_, Jan 18 2015 %C A105571 The prime members of the sequence are A063643. - _Michel Marcus_, Mar 27 2015 %H A105571 Reinhard Zumkeller, <a href="/A105571/b105571.txt">Table of n, a(n) for n = 1..10000</a> %e A105571 From _Jon E. Schoenfield_, Jan 18 2015: (Start) %e A105571 12 - 2 = 10 = 2*5 and 12 + 2 = 14 = 2*7 so 12 is in the sequence. %e A105571 23 - 2 = 21 = 3*7 and 23 + 2 = 25 = 5*5 so 23 is in the sequence. %e A105571 16 - 2 = 14 = 2*7 but 16 + 2 = 18 = 2*3*3 so 16 is not in the sequence. %e A105571 (End) %p A105571 select(n -> numtheory:-bigomega(n+2) = 2 and numtheory:-bigomega(n-2) = 2, %p A105571 [$1..1000]); # _Robert Israel_, Jan 18 2015 %t A105571 q=2;lst={};Do[If[Plus@@Last/@FactorInteger[n-q]==q&&Plus@@Last/@FactorInteger[n+q]==q,AppendTo[lst,n]],{n,7!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Feb 01 2009 *) %t A105571 Select[Range[700], PrimeOmega[# + 2] == PrimeOmega[# - 2] == 2 &] (* _Vincenzo Librandi_, Mar 30 2015 *) %o A105571 (Magma) IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [3..700] | IsSemiprime(n+2) and IsSemiprime(n-2) ]; // _Vincenzo Librandi_, Mar 30 2015 %o A105571 (Haskell) %o A105571 a105571 n = a105571_list !! (n-1) %o A105571 a105571_list = [x | x <- [3..], a064911 (x - 2) == 1, a064911 (x + 2) == 1] %o A105571 -- _Reinhard Zumkeller_, Mar 31 2015 %Y A105571 Cf. A014574, A054735, A063643, A105572, A105573. %Y A105571 Cf. A064911. %K A105571 nonn %O A105571 1,1 %A A105571 _Reinhard Zumkeller_, Apr 14 2005