cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A105609 Sylvester numbers for 1/(1+x^2).

Original entry on oeis.org

1, 0, -1, -2, 1, -3, -1, 2, -1, 5, -1, 1, 1, -7, 1, 2, 1, -3, -1, 1, 1, -11, -1, 1, 1, 13, -1, 1, 1, 1, -1, 2, 1, 17, 1, 1, 1, -19, 1, 1, 1, 1, -1, 1, 1, -23, -1, 1, -1, 5, 1, 1, 1, -3, 1, 1, 1, 29, -1, 1, 1, -31, 1, 2, 1, 1, -1, 1, 1, 1, -1, 1, 1, 37
Offset: 0

Views

Author

Paul Barry, Apr 15 2005

Keywords

Examples

			(x+I)(x-I)=1+x^2
		

Crossrefs

Programs

  • Maple
    A105609 := proc(n)local k: round(Re(mul(evalf(`if`(gcd(n+1, k)=1, I+I*exp(2*Pi*I*k/(n+1)), 1)),k=1..n))): end:
    seq(A105609(n),n=0..20); # Nathaniel Johnston, Apr 20 2011
    A105609 := proc(n) local k; mul(`if`(igcd(n+1,k)=1, 2*cos(Pi*k/(n+1)), 1), k=1..n) end; seq(round(A105609(n)), n = 0..73); # Peter Luschny, Jun 09 2011
  • Mathematica
    f[n_] := FullSimplify[ Expand[Times @@ (I + I*Exp[2Pi*I*Select[Range[n], GCD[ #, n] == 1 &]/n])]]; Table[ f[n], {n, 0, 32}] (* Robert G. Wilson v, Aug 02 2005 *)

Formula

a(n) = Product_{k=1..n} if(gcd(n+1, k)=1, (I+I*exp(2*Pi*I*k/(n+1))), 1), I=sqrt(-1).
alpha(n) = Product_{0A014963 with cos replaced by sin. - Peter Luschny, Jun 09 2011

Extensions

a(40)-a(73) from Nathaniel Johnston, Apr 20 2011

A105607 Sylvester cyclotomic numbers for A002605.

Original entry on oeis.org

1, 2, 6, 8, 44, 10, 328, 56, 408, 76, 18272, 52, 136384, 568, 3856, 3104, 7598336, 424, 56714752, 2896, 215104, 31648, 3159738368, 3088, 536013824, 236224, 71910912, 161344, 1313964867584, 2320, 9807567290368, 9634304, 667730944, 13160704, 37860806656, 172864, 4078438577864704, 98232832, 37201186816, 9584896
Offset: 1

Views

Author

Paul Barry, Apr 15 2005

Keywords

Comments

Primitive parts of A002605.

Crossrefs

Programs

  • Mathematica
    f[n_] := FullSimplify[ Expand[ Times @@ ((1+Sqrt[3])-(1-Sqrt[3])*Exp[2Pi*I*Select[Range[n-1], GCD[ #, n] == 1 &]/n])]]; Table[ f[n], {n, 1, 32}] (* Robert G. Wilson v, Aug 02 2005 *)

Formula

a(n) = A002605(n)/A105606(n); a(n) = Product_{k=1..n-1, gcd(n, k)=1} (1+sqrt(3))-(1-sqrt(3))*exp(2*Pi*i*k/n), i = sqrt(-1). - Robert G. Wilson v, Aug 02 2005

Extensions

More terms from David Wasserman, May 06 2008
Showing 1-2 of 2 results.