cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105609 Sylvester numbers for 1/(1+x^2).

Original entry on oeis.org

1, 0, -1, -2, 1, -3, -1, 2, -1, 5, -1, 1, 1, -7, 1, 2, 1, -3, -1, 1, 1, -11, -1, 1, 1, 13, -1, 1, 1, 1, -1, 2, 1, 17, 1, 1, 1, -19, 1, 1, 1, 1, -1, 1, 1, -23, -1, 1, -1, 5, 1, 1, 1, -3, 1, 1, 1, 29, -1, 1, 1, -31, 1, 2, 1, 1, -1, 1, 1, 1, -1, 1, 1, 37
Offset: 0

Views

Author

Paul Barry, Apr 15 2005

Keywords

Examples

			(x+I)(x-I)=1+x^2
		

Crossrefs

Programs

  • Maple
    A105609 := proc(n)local k: round(Re(mul(evalf(`if`(gcd(n+1, k)=1, I+I*exp(2*Pi*I*k/(n+1)), 1)),k=1..n))): end:
    seq(A105609(n),n=0..20); # Nathaniel Johnston, Apr 20 2011
    A105609 := proc(n) local k; mul(`if`(igcd(n+1,k)=1, 2*cos(Pi*k/(n+1)), 1), k=1..n) end; seq(round(A105609(n)), n = 0..73); # Peter Luschny, Jun 09 2011
  • Mathematica
    f[n_] := FullSimplify[ Expand[Times @@ (I + I*Exp[2Pi*I*Select[Range[n], GCD[ #, n] == 1 &]/n])]]; Table[ f[n], {n, 0, 32}] (* Robert G. Wilson v, Aug 02 2005 *)

Formula

a(n) = Product_{k=1..n} if(gcd(n+1, k)=1, (I+I*exp(2*Pi*I*k/(n+1))), 1), I=sqrt(-1).
alpha(n) = Product_{0A014963 with cos replaced by sin. - Peter Luschny, Jun 09 2011

Extensions

a(40)-a(73) from Nathaniel Johnston, Apr 20 2011