cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105638 Maximum number of intersections in self-intersecting n-gon.

Original entry on oeis.org

0, 1, 5, 7, 14, 17, 27, 31, 44, 49, 65, 71, 90, 97, 119, 127, 152, 161, 189, 199, 230, 241, 275, 287, 324, 337, 377, 391, 434, 449, 495, 511, 560, 577, 629, 647, 702, 721, 779, 799, 860, 881, 945, 967, 1034, 1057, 1127, 1151, 1224, 1249, 1325, 1351, 1430, 1457
Offset: 3

Views

Author

David W. Wilson, Apr 16 2005

Keywords

Comments

Quasipolynomial of order 2. - Charles R Greathouse IV, Mar 29 2012

Examples

			The self-intersecting pentagon with the largest number of intersections is the star polygon {5/2} (pentagram), with 5 intersections, hence a(5) = 5.
		

References

  • B. Grünbaum, Selfintersections of Polygons, Geombinatorics, Volume VIII 4 (1998), pp. 37-45.

Programs

  • Mathematica
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 5, 7, 14}, 54] (* or *)
    DeleteCases[CoefficientList[Series[x^4*(1 + 4 x - x^3)/((1 + x)^2*(1 - x)^3), {x, 0, 56}], x], 0] (* Michael De Vlieger, Jul 10 2020 *)
  • PARI
    a(n)=if(n%2,n*(n-3)/2,n*(n-4)/2+1) \\ Charles R Greathouse IV, Mar 29 2012

Formula

a(n) = n(n-3)/2 if n odd, n(n-4)/2+1 if n even.
a(n) = a(n-1) + 2a(n-2) - 2a(n-3) - a(n-4) + a(n-5).
G.f.: x^4*(1+4*x-x^3)/((1+x)^2*(1-x)^3). - Colin Barker, Jan 31 2012