A105640 Triangle read by rows: T(n,k) is the number of hill-free Dyck paths of semilength n and having k UUDD's, where U=(1,1) and D=(1,-1) (0<=k<=floor(n/2), n>=2). A hill in a Dyck path is a peak at level 1.
0, 1, 1, 1, 2, 3, 1, 5, 10, 3, 14, 29, 13, 1, 39, 89, 52, 6, 111, 279, 195, 36, 1, 322, 881, 722, 185, 10, 947, 2806, 2637, 867, 80, 1, 2818, 8997, 9528, 3846, 520, 15, 8470, 28997, 34163, 16382, 2976, 155, 1, 25677, 93858, 121749, 67696, 15631, 1246, 21
Offset: 2
Examples
T(5,2)=3 because we have U(UUDD)(UUDD)D, (UUDD)U(UUDD)D and U(UUDD)D(UUDD) (the UUDD's are shown between parentheses). Triangle starts: 0,1; 1,1; 2,3,1; 5,10,3; 14,29,13,1; ...
Links
- E. Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
Programs
-
Maple
G:=(1+2*z+z^2-t*z^2-sqrt(1-4*z+2*z^2-2*t*z^2+z^4-2*z^4*t+t^2*z^4))/2/z/(2+z+z^2-t*z^2)-1: Gser:=simplify(series(G,z=0,17)): for n from 2 to 14 do P[n]:=sort(coeff(Gser,z^n)) od: for n from 2 to 14 do seq(coeff(P[n],t,j),j=0..floor(n/2)) od; # yields sequence in triangular form
Formula
G.f.: G-1, where G =G(t,z) satisfies z(2+z+z^2-tz^2)G^2-(1+2z+z^2-tz^2)G+1=0.
Comments