cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105641 Number of hill-free Dyck paths of semilength n, having no UUDD's, where U=(1,1) and D=(1,-1) (a hill in a Dyck path is a peak at level 1).

Original entry on oeis.org

0, 1, 2, 5, 14, 39, 111, 322, 947, 2818, 8470, 25677, 78420, 241061, 745265, 2315794, 7228702, 22656505, 71273364, 224965675, 712249471, 2261326010, 7197988973, 22966210236, 73437955105, 235307698544, 755395560220, 2429293941019
Offset: 2

Views

Author

Emeric Deutsch, May 08 2006

Keywords

Comments

a(n) = A105640(n,0).

Examples

			a(4)=2 because we have UUDUDUDD and UUUDUDDD.
		

Crossrefs

Cf. A118995.

Programs

  • Maple
    G:=((1+z)^2-sqrt((1+z^2)^2-4*z))/2/z/(2+z+z^2)-1: Gser:=series(G,z=0,36): seq(coeff(Gser,z^n),n=2..32);

Formula

G.f.: [(1+z)^2-sqrt((1+z^2)^2-4z)]/[2z(2+z+z^2)]-1.
D-finite with recurrence 2*(n+1)*a(n) +(-7*n+5)*a(n-1) +(n-5)*a(n-2) +2*(-n-1)*a(n-3) +2*(2*n-7)*a(n-4) +(n-5)*a(n-5) +(n-5)*a(n-6)=0. - R. J. Mathar, Jul 24 2022