cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105674 Highest minimal distance of any Type I (strictly) singly-even binary self-dual code of length 2n.

This page as a plain text file.
%I A105674 #12 Oct 08 2023 04:42:46
%S A105674 2,2,2,2,2,4,4,4,4,4,6,6,6,6,6,8,6,8,8,8,8,8,10,10,10,10,10
%N A105674 Highest minimal distance of any Type I (strictly) singly-even binary self-dual code of length 2n.
%C A105674 The sequence continues: a(28) = either 10 or 12, then a(58) = 10, a(60) through a(68) = 12, ...
%D A105674 F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1977.
%H A105674 G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.
%H A105674 P. Gaborit, <a href="http://www.unilim.fr/pages_perso/philippe.gaborit/SD/">Tables of Self-Dual Codes</a>.
%H A105674 E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (<a href="http://neilsloane.com/doc/self.txt">Abstract</a>, <a href="http://neilsloane.com/doc/self.pdf">pdf</a>, <a href="http://neilsloane.com/doc/self.ps">ps</a>).
%e A105674 At length 8 the only strictly Type I self-dual code is {00,11}^4, which has d=2, so a(4) = 2.
%Y A105674 Cf. A105675, A105676, A105677, A105678, A016729, A066016, A105681, A105682.
%Y A105674 Cf. also A105685 for the number of such codes.
%K A105674 nonn,nice,more
%O A105674 1,1
%A A105674 _N. J. A. Sloane_, May 06 2005