This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A105675 #12 Mar 13 2022 09:45:04 %S A105675 4,4,8,8,8,12,12,12 %N A105675 Highest minimal distance of any Type II doubly-even binary self-dual code of length 8n. %C A105675 Is a(9) = 12 or 16? This is an open question of long standing. %D A105675 F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1977. %H A105675 G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006. %H A105675 P. Gaborit, <a href="http://www.unilim.fr/pages_perso/philippe.gaborit/SD/">Tables of Self-Dual Codes</a> %H A105675 E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (<a href="http://neilsloane.com/doc/self.txt">Abstract</a>, <a href="http://neilsloane.com/doc/self.pdf">pdf</a>, <a href="http://neilsloane.com/doc/self.ps">ps</a>). %H A105675 N. J. A. Sloane, <a href="https://doi.org/10.1109/TIT.1973.1054975">Is There a (72,36) d = 16 Self-Dual Code?</a>, IEEE Trans. Information Theory, vol. IT-19 (1973), p. 251. %e A105675 At length 8 the only Type II doubly-even self-dual code is the Hamming code e_8, which has d=4, so a(1) = 4. The [24,12,8] Golay code has d=8, so a(3) = 8. %Y A105675 Cf. A105674, A105676, A105677, A105678, A016729, A066016, A105681, A105682. %Y A105675 Cf. also A001380, A018236. %K A105675 nonn,hard,more,nice %O A105675 1,1 %A A105675 _N. J. A. Sloane_, May 06 2005