cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105676 Highest minimal Hamming distance of any Type 3 ternary self-dual code of length 4n.

This page as a plain text file.
%I A105676 #13 Apr 15 2019 03:24:03
%S A105676 3,3,6,6,6,9,9,9,12,12,12,15,15,15,18,18
%N A105676 Highest minimal Hamming distance of any Type 3 ternary self-dual code of length 4n.
%D A105676 F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1977.
%H A105676 P. Gaborit, <a href="http://www.unilim.fr/pages_perso/philippe.gaborit/SD/">Tables of Self-Dual Codes</a>
%H A105676 W. C. Huffman, <a href="https://doi.org/10.1016/j.ffa.2005.05.012">On the classification and enumeration of self-dual codes</a>, Finite Fields Applic., 11 (2005), 451-490.
%H A105676 G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.
%H A105676 E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (<a href="http://neilsloane.com/doc/self.txt">Abstract</a>, <a href="http://neilsloane.com/doc/self.pdf">pdf</a>, <a href="http://neilsloane.com/doc/self.ps">ps</a>).
%e A105676 The [12,6,6]_3 ternary Golay code has d=6, so a(3) = 6.
%Y A105676 Cf. A105674, A105675, A105677, A105678, A016729, A066016, A105681, A105682.
%Y A105676 Cf. also A105683.
%K A105676 nonn,more
%O A105676 1,1
%A A105676 _N. J. A. Sloane_, May 06 2005
%E A105676 The sequence continues: a(17) = either 15 or 18, a(18) = 18, ...