cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105678 Highest minimal Hamming distance of any Type 4^H Hermitian linear self-dual code over GF(4) of length 2n.

This page as a plain text file.
%I A105678 #13 Apr 15 2019 06:03:06
%S A105678 2,2,4,4,4,4,6,6,8,8,8,8,8,10,12
%N A105678 Highest minimal Hamming distance of any Type 4^H Hermitian linear self-dual code over GF(4) of length 2n.
%C A105678 The next term a(16) is either 10 or 12.
%H A105678 P. Gaborit, <a href="http://www.unilim.fr/pages_perso/philippe.gaborit/SD/">Tables of Self-Dual Codes</a>
%H A105678 P. Gaborit and A. Otmani, <a href="https://doi.org/10.1016/S1071-5797(03)00011-X">Experimental construction of self-dual codes</a>, Finite Fields and Their Applications, Volume 9, Issue 3, July 2003, Pages 372-394.
%H A105678 W. C. Huffman, <a href="https://doi.org/10.1016/j.ffa.2005.05.012">On the classification and enumeration of self-dual codes</a>, Finite Fields Applic., 11 (2005), 451-490.
%H A105678 G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.
%H A105678 E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (<a href="http://neilsloane.com/doc/self.txt">Abstract</a>, <a href="http://neilsloane.com/doc/self.pdf">pdf</a>, <a href="http://neilsloane.com/doc/self.ps">ps</a>).
%Y A105678 Cf. A105674, A105675, A105676, A105677, A016729, A066016, A105681, A105682.
%Y A105678 Cf. also A105686 for the numbers of such codes.
%K A105678 nonn,more
%O A105678 1,1
%A A105678 _N. J. A. Sloane_, May 06 2005