This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A105682 #18 Dec 13 2019 05:20:05 %S A105682 4,4,4,4,4,4,4,8,4,4,4,8,4,8,8,8,8,8,8,8,8,8,12,16 %N A105682 Highest minimal Euclidean norm of any Type 4^Z self-dual code of length n over Z/4Z. %H A105682 S. T. Dougherty, M. Harada and P. Solé, <a href="http://academic.uofs.edu/faculty/Doughertys1/publ.htm">Shadow Codes over Z_4</a>, Finite Fields Applic., 7 (2001), 507-529. %H A105682 P. Gaborit, <a href="http://www.unilim.fr/pages_perso/philippe.gaborit/SD/">Tables of Self-Dual Codes</a> %H A105682 W. C. Huffman, <a href="https://doi.org/10.1016/j.ffa.2005.05.012">On the classification and enumeration of self-dual codes</a>, Finite Fields Applic., 11 (2005), 451-490. %H A105682 G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006. %H A105682 E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (<a href="http://neilsloane.com/doc/self.txt">Abstract</a>, <a href="http://neilsloane.com/doc/self.pdf">pdf</a>, <a href="http://neilsloane.com/doc/self.ps">ps</a>). %Y A105682 Cf. A105674, A105675, A105676, A105677, A105678, A016729, A066016, A105681. %Y A105682 A105689 gives number of such codes. Cf. also A066014. %K A105682 nonn,more %O A105682 1,1 %A A105682 _N. J. A. Sloane_, May 06 2005