This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A105686 #10 Apr 15 2019 06:03:11 %S A105686 1,1,1,1,2,5,1,4,1,2 %N A105686 Number of inequivalent codes attaining highest minimal Hamming distance of any Type 4^H Hermitian linear self-dual code over GF(4) of length 2n. %H A105686 P. Gaborit, <a href="http://www.unilim.fr/pages_perso/philippe.gaborit/SD/">Tables of Self-Dual Codes</a> %H A105686 W. C. Huffman, <a href="https://doi.org/10.1109/18.54885">On extremal self-dual quaternary codes of lengths 18 to 28. I</a>, IEEE Trans. Infor. Theory, 36 (1990), 651-660. %H A105686 W. C. Huffman, <a href="https://doi.org/10.1109/18.86976">On extremal self-dual quaternary codes of lengths 18 to 28. II</a>, IEEE Trans. Infor. Theory, 37 (1991), 1206-1216. %H A105686 W. C. Huffman, <a href="https://doi.org/10.1109/18.54886">On 3-elements in monomial automorphism groups of quaternary codes</a>, IEEE Trans. Infor. Theory, 36 (1990), 660-664. %H A105686 W. C. Huffman, <a href="https://doi.org/10.1016/j.ffa.2005.05.012">On the classification and enumeration of self-dual codes</a>, Finite Fields Applic., 11 (2005), 451-490. %H A105686 G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006. %H A105686 E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (<a href="http://neilsloane.com/doc/self.txt">Abstract</a>, <a href="http://neilsloane.com/doc/self.pdf">pdf</a>, <a href="http://neilsloane.com/doc/self.ps">ps</a>). %Y A105686 Cf. A105674, A105675, A105676, A105677, A105678, A016729, A066016, A105681, A105682. %Y A105686 A105678 gives the minimal distance of these codes. %K A105686 nonn,more %O A105686 1,5 %A A105686 _N. J. A. Sloane_, May 06 2005